读数学史有感三

2024-10-08

读数学史有感三(2篇)

1.读数学史有感三 篇一

大道至简

文/王宝龙

数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。数学不仅是人类最早开创的自然学科,同时也是我们每个人学习最早、历时最长的知识。我们从牙牙学语时就开始学习数数,然后小学初中高中直到大学还在学习数学。作为一个数学困难户,至今尤对大学数学的考试心有余悸,真可谓是“数学虐我千百遍,我待数学如初恋”。前段时间网络上出现一个关于“高考取消数学”的调查,超过七成的网友投票赞成取消数学,大部分人认为除了数钱,平常根本用不到数学。那么数学真的是阳春白雪,与我们的日常生活完全无关,只能用来数钱吗?读完《数学之美》,你一定会有更多的感触。

如果大家关注手机制造商,一定听说过罗永浩的锤子手机,锤子手机成立五年,虽然销量一般,但是每年的发布会都看点颇多,罗老师旁征博引妙语连珠也不失为一种乐趣。去年的发布会上,老罗展示了一项合作伙伴的黑科技――科大讯飞的语音输入法。老罗快速地说出一段话,话音刚落,讯飞输入法已将语音转化成了汉字显示在屏幕上,面对老罗的浓重东北口音,正确率100%,还有标点符号。演示现场,观众掌声雷动,第二天,科大讯飞的股票应声大涨。

那么如此神奇的语音识别是如何实现的呢?《数学之美》为我们提供了寻找答案的思路。首先对问题进行抽象,所谓语音识别,就是听话的人去猜测说话者要表达的意思,假设我们听到的声音是O1,O2,O3......,我们如何推测说话者说出的单词S1,S2,S3......呢?用概率论的语言描述,就是在已知O1,O2,O3......的情况下,找出最大概率的单词串组合S1,S2,S3......。复杂的语音识别问题被抽象成了简单的概率问题,问题的答案也呼之欲出,随机数学中的隐含马尔可夫模型――马尔可夫链的升级版。最后,为了提高识别率,科学家利用大量语料进行训练,最终达成了前文所述的成就。

精炼的问题抽象+数学模型定义+结果优化,科学家们解决问题的方式是如此优美。现在,语音识别不仅应用在输入法中,SIRI、微软小娜、甚至一些家电、汽车上都有语音识别,语音识别已经彻底改变了我们的生活。

除了语音识别问题,《数学之美》还介绍了多种互联网难题的数学背景。例如,通过统计模型解决中文分词问题;利用图论遍历问题构建互联网网络爬虫应用;根据网页链接数量得出网页权重进而归纳出PageRank(网页排名)算法,建立Google搜索引擎;利用信号处理学中去除噪音的方法来进行搜索引擎反作弊,等等。这些复杂问题的背后都有一个简单的数学模型,不由得让人感叹数学的魅力。

《数学之美》并没有一味地展示数学公式、推导过程,而是先给出一个计算机科学中的经典问题,介绍各个领域的典故,结合数学发展的历史和实际案例,谈古论今,解决问题的同时,系统地阐述背后的数学理论起源、发展及其作用,读起令人兴趣盎然。看完本书,能让人感受到数学的魅力所在,数学对生活的精确表述、对逻辑的完美演绎成就了现代社会的美好生活。

以我粗浅的认识,数学至少有三美:

抽象美

人类语言多种多样,每种语言千变万化,包含复杂的单词、语法、惯用语等,我们学习一种外语都很困难,更不要说让电脑听懂语言、翻译语言。然而有了数学,有了信息论,却可以将复杂的语言抽象成简单的信息,利用统计模型对信息进行分析、处理,进而建立起自然语言处理系统,实现语音识别、机器翻译。数学如此高超的抽象能力让人叹为观止。

简洁美

爱因斯坦说过:“美在本质上终究是简单性。”数学语言本身就是最简洁的文字,许多复杂的客观现象,总结为一定的规律时,往往呈现为十分简单的公式。进入互联网时代,知识成几何倍数增长,每天都会产生千百亿个网页,在Google之前,大部分搜索引擎公司采用人工分类、人工排序的方式开发搜索引擎,收录网页少,更新结果慢。而Google引入了机器搜索,它的核心算法非常简洁,PageRank(网页排名),根据网页中的链接进行民主排名,计算出所有网页的影响力,将排名最高的网页放在搜索结果的最前面。

统一美

一切客观事物都是相互联系的,因而作为反映客观事物的数学概念、数学定理、数学公式、数学法则也是互相联系的,在一定条件下可处于一个统一体之中。

,阿尔法围棋(AlphaGo)横空出世,成为第一个战胜围棋世界冠军的人工智能程序,AlphaGo由谷歌(Google)旗下DeepMind公司戴密斯・哈萨比斯领衔的团队开发。其主要工作原理是“深度学习”。AlphaGo通过两个不同的神经网络“大脑”合作来改进下棋模式。这些“大脑”是多层神经网络,跟Google图片搜索引擎识别图片在结构上是相似的。它们从多层启发式二维过滤器开始,去处理围棋棋盘的定位,就像图片分类器处理图片一样。“围棋大师”与图像识别殊途同归,果真是万物相通。

大道至简,其实不仅数学具有这样的魅力,很多科学都具有类似的特点。具体到我们的软件开发工作,同样推崇简单美。面对复杂问题,能够抽象、简化、抓住问题本质,去粗存精,化繁为简,才能建立好用易用的软件系统。

作者简介

王宝龙,来自软件开发中心应用开发一部,目前在产品合约组负责贷款产品相关工作。爱好运动,羽毛球、乒乓球、游泳,欢迎志同道合的朋友们来一起交流!

2.读数学史有感三 篇二

每个数学家有每个数学家的故事,但每个数学家的成功都受到两个方面的决定性影响:一是客观方面;二是主观方面。

客观方面与家庭经济情况,社会发展程度、社会对数学人才的关注情况密切相关。这两个方面不是孤立存在的,而是有联系的,如家庭的经济情况会影响到人的身体健康情况,社会对数学人才的关注情况会影响到数学人才的精神与物质生活。

上一篇:我改变了生活的色彩议论文下一篇:国旗下讲话稿:《迎奥运 讲礼仪 促和谐》