圆与正多边形教案一(共10篇)
1.圆与正多边形教案一 篇一
小学六年级奥数教案—11圆与扇形
本教程共30讲
圆与扇形
五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
圆的面积=πr2,圆的周长=2πr,本书中如无特殊说明,圆周率都取π=3.14。
例1 如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。已知每条跑道宽1.22米,那么外道的起点在内道起点前面多少米?(精确到0.01米)
分析与解:半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为
πR-πr=π(R-r)
=3.14×1.22≈3.83(米)。
即外道的起点在内道起点前面3.83米。
例2 有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米?
分析与解:由右上图知,绳长等于6个线段AB与6个BC弧长之和。将图中与BC弧类似的6个弧所对的圆心角平移拼补,得到6个角的和是360°,所以BC弧所对的圆心角是60°,6个BC弧等于直径5厘米的圆的周长。而线段AB等于塑料管的直径,由此知绳长=5×6+5×3.14=45.7(厘米)。
例3 左下图中四个圆的半径都是5厘米,求阴影部分的面积。
分析与解:直接套用公式,正方形中间的阴影部分的面积不太好计算。容易看出,正方形中的空白部分是4个四分之一圆,利用五年级学过的割补法,可以得到右上图。右上图的阴影部分的面积与原图相同,等于一个正方形与4个半圆(即2个圆)的面积之和,为(2r)2+πr2×2=102+3.14×50≈257(厘米2)。
例4 草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。问:这只羊能够活动的范围有多大?
分析与解:如右上图所示,羊活动的范围可以分为A,B,C三部分,所以羊活动的范围是
例5 右图中阴影部分的面积是2.28厘米2,求扇形的半径。
分析与解:阴影部分是扇形与等腰直角三角形相差的部分。
所以,扇形的半径是4厘米。
例6 右图中的圆是以O为圆心、径是10厘米的圆,求阴影部分的面积。
分析与解:解此题的基本思路是:
从这个基本思路可以看出:要想得到阴影部分S1 的面积,就必须想办法求出S2和S3的面积。
S3的面积又要用下图的基本思路求:
现在就可以求出S3的面积,进而求出阴影部分的面积了。
S3=S4-S5=50π-100(厘米2),S1=S2-S3=50π-(50π-100)=100(厘米2)。
练习11
1.直角三角形ABC放在一条直线上,斜边AC长20厘米,直角边BC长10厘米。如下图所示,三角形由位置Ⅰ绕A点转动,到达位置Ⅱ,此时B,C点分别到达B1,C1点;再绕B1点转动,到达位置Ⅲ,此时A,C1点分别到达A2,C2点。求C点经C1到C2走过的路径的长。
2.下页左上图中每个小圆的半径是1厘米,阴影部分的周长是多少厘米?
3.一只狗被拴在一个边长为3米的等边三角形建筑物的墙角上(见右上图),绳长是4米,求狗所能到的地方的总面积。
5.右上图是一个400米的跑道,两头是两个半圆,每一半圆的弧长是100米,中间是一个长方形,长为100米。求两个半圆的面积之和与跑道所围成的面积之比。
6.左下图中,正方形周长是圆环周长的2倍,当圆环绕正方形无滑动地滚动一周又回到原来位置时,这个圆环转了几圈?
7.右上图中,圆的半径是4厘米,阴影部分的面积是14π厘米2,求图中三角形的面积。
答案与提示 练习11
1.68厘米。
2.62.8厘米。
解:大圆直径是6厘米,小圆直径是2厘米。阴影部分周长是6π+2π×7=62.8(厘米)。
3.43.96米2。
解:如下页右上图所示,可分为半径为4米、圆心角为300°的扇形与两个半径为1米、圆心角为120°的扇形。面积为
4.60°。
解:设∠CAB为n度,半圆ADB的半径为r。由题意有
解得n=60。
5.1∶3。
6.3圈。
7.8厘米2。
解:圆的面积是42π=16π(厘米2),空白扇形面积占圆面积的1-的等腰直角三角形,面积为4×4÷2=8(厘米2)。
2.圆与正多边形教案一 篇二
一、教学目标(一)知识教学点
使学生掌握点与圆、直线与圆以及圆与圆的位置关系;过圆上一点的圆的切线方程,判断直线与圆相交、相切、相离的代数方法与几何方法;两圆位置关系的几何特征和代数特征.
(二)能力训练点
通过点与圆、直线与圆以及圆与圆位置关系的教学,培养学生综合运用圆有关方面知识的能力.
(三)学科渗透点
点与圆、直线与圆以及圆与圆的位置关系在初中平面几何已进行了分析,现在是用代数方法来分析几何问题,是平面几何问题的深化.
二、教材分析
1.重点:(1)直线和圆的相切(圆的切线方程)、相交(弦长问题);(2)圆系方程应用.
(解决办法:(1)使学生掌握相切的几何特征和代数特征,过圆上一点的圆的代线方程,弦长计算问题;(2)给学生介绍圆与圆相交的圆系方程以及直线与圆相交的圆系方程.)2.难点:圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程的证明.(解决办法:仿照课本上圆x2+y2=r2上一点(x0,y0)切线方程的证明.)
三、活动设计
归纳讲授、学生演板、重点讲解、巩固练习.
四、教学过程(一)知识准备
我们今天研究的课题是“点与圆、直线与圆以及圆与圆的位置关系”,为了更好地讲解这个课题,我们先复习归纳一下点与圆、直线与圆以及圆与圆的位置关系中的一些知识.
1.点与圆的位置关系
设圆C∶(x-a)2+(y-b)2=r2,点M(x0,y0)到圆心的距离为d,则有:(1)d>r(2)d=r(3)d<r 点M在圆外; 点M在圆上; 点M在圆内.
2.直线与圆的位置关系
设圆 C∶(x-a)2+(y-b)=r2,直线l的方程为Ax+By+C=0,圆心(a,判别式为△,则有:(1)d<r(2)d=r(3)d<r 直线与圆相交; 直线与圆相切;
直线与圆相离,即几何特征;
直线与圆相交; 或(1)△>0(2)△=0(3)△<0 直线与圆相切;
直线与圆相离,即代数特征,3.圆与圆的位置关系
设圆C1:(x-a)2+(y-b)2=r2和圆C2:(x-m)2+(y-n)2=k2(k≥r),且设两圆圆心距为d,则有:
(1)d=k+r(2)d=k-r(3)d>k+r(4)d<k+r 两圆外切; 两圆内切; 两圆外离; 两圆内含;
两圆相交.
(5)k-r<d<k+r 4.其他
(1)过圆上一点的切线方程:
①圆x2+y2=r2,圆上一点为(x0,y0),则此点的切线方程为x0x+y0y=r2(课本命题).
②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).
(2)相交两圆的公共弦所在直线方程:
设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0,若两圆相交,则过两圆交点的直线方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.
(3)圆系方程:
①设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0.若两圆相交,则过交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程).
②设圆C∶x2+y2+Dx+Ey+F=0与直线l:Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ为参数).
(二)应用举例
和切点坐标.
分析:求已知圆的切线问题,基本思路一般有两个方面:(1)从代数特征分析;(2)从几何特征分析.一般来说,从几何特征分析计算量要小些.该例题由学生演板完成.
∵圆心O(0,0)到切线的距离为4,把这两个切线方程写成
注意到过圆x2+y2=r2上的一点P(x0,y0)的切线的方程为x0x+y0y=r2,例
2已知实数A、B、C满足A2+B2=2C2≠0,求证直线Ax+By+C=0与圆x2+y2=1交于不同的两点P、Q,并求弦PQ的长.
分析:证明直线与圆相交既可以用代数方法列方程组、消元、证明△>0,又可以用几何方法证明圆心到直线的距离小于圆半径,由教师完成.
证:设圆心O(0,0)到直线Ax+By+C=0的距离为d,则d=
∴直线Ax+By+C=0与圆x2+y1=1相交于两个不同点P、Q.
例
3求以圆C1∶x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程.
解法一:
相减得公共弦所在直线方程为4x+3y-2=0.
∵所求圆以AB为直径,于是圆的方程为(x-2)2+(y+2)2=25. 解法二:
设所求圆的方程为:
x2+y2-12x-2y-13+λ(x2+y2+12x+16y-25)=0(λ为参数)
∵圆心C应在公共弦AB所在直线上,∴ 所求圆的方程为x2+y2-4x+4y-17=0. 小结:
解法一体现了求圆的相交弦所在直线方程的方法;解法二采取了圆系方程求待定系数,解法比较简练.
(三)巩固练习
1.已知圆的方程是x2+y2=1,求:
(1)斜率为1的切线方程;
2.(1)圆(x-1)2+(y+2)2=4上的点到直线2x-y+1=0的最短距离是
(2)两圆C1∶x2+y2-4x+2y+4=0与C2∶x2+y2+2x-6y-26=0的位置关系是______.(内切)由学生口答.
3.未经过原点,且过圆x2+y2+8x-6y+21=0和直线x-y+5=0的两个交点的圆的方程.
分析:若要先求出直线和圆的交点,根据圆的一般方程,由三点可求得圆的方程;若没过交点的圆系方程,由此圆系过原点可确定参数λ,从而求得圆的方程.由两个同学演板给出两种解法:
解法一:
设所求圆的方程为x2+y2+Dx+Ey+F=0. ∵(0,0),(-2,3),(-4,1)三点在圆上,解法二:
设过交点的圆系方程为:
x2+y2+8x-6y+21+λ(x-y+5)=0.
五、布置作业
2.求证:两圆x2+y2-4x-6y+9=0和x2+y2+12x+6y-19=0相外切. 3.求经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.
4.由圆外一点Q(a,b)向圆x2+y2=r2作割线交圆于A、B两点,向圆x2+y2=r2作切线QC、QD,求:
(1)切线长;
(2)AB中点P的轨迹方程. 作业答案:
2.证明两圆连心线的长等于两圆半径之和 3.x2+y2-x+7y-32=0
3.LOGO语言--画正多边形教案 篇三
教学目标:
1、掌握重复命令的基本格式。
2、能用重复命令简化规则图形的作图命令。
3、能理解重复命令的嵌套。教学重点:重复命令的基本格式。
教学难点:确定“重复的内容”与“重复的次数”。教学关键:重复命令REPEAT的用法。教学准备:硬件:多媒体电脑室、投影仪。
软件:电子教室系统、LOGO语言程序。
教学过程:
一、复习导入
1、理解一些角的知识:
锐角 直角 钝角平角 周角 各种角的度数大小。理解长度的概念。
2、同学们,我们知道正方形4条边相等,4个角都是直角,下面请根据命令,来画出步长为100的正方形。
FD 100 RT 90
FD 100 RT 90
FD 100 RT 90
FD 100 RT 90 正方形画出来了,大家来观察一下这些命令有没有什么特征?
同学们发现,同一组命令重复了4次。这样重复输入你感觉怎么样?有没有更好、更方便的方法一次完成这些操作呢?通过这节课的学习,我们就可以学到简便的方法。
二、新授新课
1、在上面画正方形的过程中,我们发现,同一组命令重复了4次,每次旋转了90度,一共旋转了360度。
2、下面我们再来画一个步长为100的等边三角形。我们知道,等边三角形的三条边长相等,三个内角都是60度。小海龟怎么才能画出等边三角形呢?
出示网页内容,得出图中的角度是120度。FD 100 RT 120
FD 100 RT 120
FD 100 RT 120 在上面画等边三角形的过程中,我们发现,同一组命令重复了3次,每次旋转了120度,一共旋转了360度。
3、我们把各边相等,各角也相等的多边形叫做正多边形。下面我们再来画一个步长为80的正六边形。
提示:正六边每一个内角是120度。我们得出小海龟每次旋转60度。我们要重复6次,一共旋转了360度。FD 80 RT 60
FD 80 RT 60
FD 80 RT 60
FD 80 RT 60
FD 80 RT 60
FD 80 RT 60
4、现在我们已经知道怎样画正多边形了,随着边数的增多,画的命令也就越来越多,画起来也觉得越来越费时间、越来越繁,下面老师就把简单的方法教给大家。
演示用重复命令画正方形: REPEAT 4 [FD 100 RT 90] 演示用重复命令画正六边形: REPEAT 6 [FD 80 RT 60] 板书:重复命令REPEAT
从以上的例子可以看出,画正N边形时,每次小海龟旋转的角度是360/N度。使用重复命令画正多边形,我们发现它们是由N句相同的命令组成的。只要使用一条重复命令,小海龟就能完成同样的任务。
画正多边形的命令是: REPEAT N [FD 步长 RT 360/N] 重复命令的基本格式: REPEAT 重复的次数 [重复执行的内容]
三、巩固练习
1、现在老师来考考大家,我们一起动手来画一个步长为60的正7边形。REPEAT 7 [FD 60 RT 360/7]
2、画一个步长为40的正10边形。REPEAT 10 [FD 40 RT 360/10]
3、画一个步长为30的正16边形。REPEAT 16 [FD 30 RT 360/16]
注意观察:当边数越来越多时,它的边数能数清吗?越来越像什么图形?(圆)下面我们来画一个步长为1的正360边形。再来画一个步长为10的正36边形。
通常,我们在LOGO语言中画圆,都是用正36边形代替的。
四、总结
本节课我们学习了用重复命令来画正多边形,通过使用重复命令,使我们在画规则图形的时候,简化了画图命令,因此我们一定要很好地掌握它。
五、思考题
请用重复命令画出以下图形,要求一气呵成。教师指导,提示。出示参考答案。
4.相似多边形的教案 篇四
学习目标:
1、会说出相似多边形的概念和性质.2、在简单情形下,能根据定义判断两个多边形相似.3、会用相似多边形的性质解决简单的几何问题.重点与难点:
1、本节教学的重点是相似多边形的定义和性质.2、要判断两个多边形是否相似,需要看它们的边是否对应成比例、对应角是否相等,情形要比三角形复杂,是本节教学的难点.教学方法:自主探究 教学用具:多媒体 教学过程
一、创设问题情境,导入新课 :
1.下面请同学 们观察下面两个多边形: 计算机显 示屏上的多边形ABCDEF和投射到银幕上的多边形A1B1C1D1E1F1,它们的形状相同吗? 学生回答后,教师: 这样的两个多边形叫做什么多边形? 2.引入课题:相似多边形
二、归纳定义及运用
(学生根据观察和体验的过程,归纳定义,提高语言表达能力)1.合作探究: 在图4-11中的两个多边形中,是否有对应相等的内角?设法验证你的猜测.在图4-11中的两个多边形中,夹相等内角的两边是否成比例?(同桌一人测角,一人测边,共同得出结论:这种形状相同的多边形各对应 角相等、各对应边成比例.然后尝试给相似多边形下一个定义.)2.获得新知:(自读课本,时间3分钟,然后回答老师提出的问题:①多边形相似需满足几个条件? ②相似多边形的记法有什么要求?③什么叫相似比?求相似比要注意什么?)3.议一议:(1)观察下面两组图形,图(1)中的两个图形相似吗?图(2)中的两个图形呢?为什么?你从中得到什么启发?与同桌交流.(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?
(通过对两个典型范例的分析,加深对相似多边形的本质特征的理解.让学生充分发表看法,然后老师总结。)4.巩固新知:(巩固相似多边形的定义这一最基本的判断方法。)例 下列每组图形是相似多边形吗?试说明理由。(1)正三角形ABC与正三角形D EF;(2)正方形ABCD与正方形EFGH.5.想一想——反过来会怎样?
如果两个多边形相似,那么它们的 对应角有什么关系?对应边呢?
(老师总结:相似多边形的定义既是最基本、最重要的判定方法,也是最本质、最重要的性质.)6.做一做 一块长3m、宽1.5m的矩形黑板如图所示,镶在其外围的木质边框宽7.5cm.边框的内外边缘所成的矩形相似吗?为什么?
(让学生独立作出判断,并说明理由.通过这个易出错的例子,使学生认识到直观有时是不可靠的,需要通过定义的两个条件进行判断.)
三、课堂小结
通过这节课的学习你有什么收获?
5.多边形的面积复习教案 篇五
教学内容:多边形的面积复习教学目标:
1.使学生进一步理解并掌握平行四边形、三角形和梯形的面积公式,能灵活应用公式解决组合图形的面积。
2.引导学生回忆、讨论与交流,沟通“多边形面积”这个单元各知识间的内在联系,从而进行系统地整理与复习。
3.在复习整理的过程中,使学生感悟“转化”思想,发展空间想象能力,养成自己整理所学知识的意识和良好学习习惯。
教学重点:整理完善知识结构,灵活运用面积公式解决问题。教学难点:沟通多边形面积公式之间的内在联系。
教具准备:课件、各种图形的卡片 学具准备:信封(图形卡片)、白纸 教学过程:
一、开门见山(课前板书课题)
同学们,这节课我们来复习多边形的面积这部分知识。
二、复习、整理和梳理
1、(课件演示)出示平行线,这是什么线?在这组平行线之间,能画哪些图形?
2、老师把这些图形画在平行线中。(课件出示图形)
(1)问:你们知道了什么?口算一下这些图形的面积各是多少?你们是根据什么算出来的?
(2)通过计算,我们发现后面四个图形的面积都是6平方厘米,正方形的面积能不能也是6?
正方形的边长是2厘米,面积只能是4平方厘米,它是长方形中特殊的一种,我们不特别做研究。
(3)请大家认真观察这些面积公式,有两个比较特殊,都要除以2,在计算三角形和梯形面积时,为什么要除以2?(面积推导过程——强调转化)
小结。
3、整理,梳理。
(1)看着这图形之间的转化过程,你们是否感觉到这四个图形之间存在着某种联系呢?就请你们根据这四个图形面积公式的推导过程,把它们之间的联系用喜欢的方法表示出来。老师为同学们准备了这四种图形,请同桌合作在白纸上摆一摆、连一连。
(2)学生上台展示、反馈。
4、小结:在推导时,我们都是把新的图形转化成已学过的旧的知识进行学习的,在数学学习时,把未知的知识转化成已知的知识,用旧知识来帮助我们解决新问题的方法,是一种很重要也很常用的学习方法。
三、提升、由特殊公式到统一公式
1、图形的变形。
(1)大家来看这个三角形,高是2厘米,底是多少?面积呢?(师拉动三角形顶点2-3次),这个三角形面积是多少?这是为什么呢?
小结:看来,无论三角形的形状怎么变,只要等底等高,面积就不变。(2)这里还有哪些图形也能像三角形一样神奇呢?
高相等的三角形、平行四边形和梯形,只要底也不变,面积就不变。
2、梯形底的变化
(1)在高不变、面积也不变的时候,底是不是必须得保持不变? 学生思考后说一说。
(2)(拉动梯形,出现不同的上下底,口算)你们有什么发现? 小结:梯形的上底加下底的和不变,高不变,面积就不变。
3、梯形变形打通图形之间的联系
(1)上底越来越短,越来越短,它变成什么图形了?怎么会变成三角形了呢?那我们就可以把三角形可以看成怎样的梯形?
(2)如果梯形的上底变长,可能会变成什么形状?(再拖动成平行四边形和长方形)看到这里,你们有什么想说的吗?
(3)正如你们所想的,这些图形都是有联系的,有人说:用梯形公式还可以计算三角形、平行四边形、长方形的面积,可以吗?那大家就用梯形面积公式试试看。(学生说算式)
小结:你看,我们可以用梯形面积公式计算出其它几种图形的面积,是不是很奇妙?这些基本图形还可以发生更奇妙的变化。
四、组合图形
1、由基本图形碰成组合图形,引导出组合图形的概念。
2、出示组合图形,你可以用几种方法解决?(把这个组合图形分成两个基本图形)小结:组合图形的面积可以转化为几个基本图形面积的和或差进行计算。
五、查漏补缺、应用知识解决问题
1、基本练习。(判断,说出正确的答案)
2、错例分析。
老师收集了一些作业本中的错题,请你们分析分析。
3、拓展。(你是怎么想的,寻求解题的便捷方法)看似无关的几个小三角形,通过转化就可以变成一个大三角形。
*
4、思考。(提供练习纸,有时间学生动笔写一写)几个割裂的部分,通过平移就转化成了简单的长方形。
六、全课总结
6.多边形的内角和教案3 篇六
一、素质教育目标
知识教学点
.使学生把握四边形的有关概念及四边形的内角和外角和定理.2.了解四边形的不稳定性及它在实际生产,生活中的应用.能力练习点
.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.2.通过推导四边形内角和定理,对学生渗透化归思想.3.会根据比较简单的条件画出指定的四边形.4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.德育渗透点
使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.美育渗透点
通过四边形内角和定理数学,渗透统一美,应用美.二、学法引导
类比、观察、引导、讲解
三、重点·难点·疑点及解决办法
.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.四、课时安排
2课时
五、教具学具预备
投影仪、胶片、四边形模型、常用画图工具
六、师生互动活动设计
教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.第2课时
七、教学步骤
复习提问
.什么叫四边形?四边形的内角和定理是什么?
2.如图4-9,求的度数.引入新课
前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.讲解新课
.四边形的外角
与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.2.外角和定理
例1已知:如图4-11,四边形ABcD的四个内角分别为,每一个顶点处有一个外角,设它们分别为.求.向学生介绍四边形外角和这一概念.教给学生一组外角的画法——同向法.即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.利用每一个外角与其邻补角的关系及四边形内角和为360°.证得:
360°
外角和定理:四边形的外角和等于360°
3.四边形的不稳定性
①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的外形和大小,已知一边一夹角,作三角形你会吗?
②若以为边作四边形ABcD.提示画法:①画任意小于平角的.②在的两边上截取.③分别以A,c为圆心,以12mm,18mm为半径画弧,两弧相交于D点.④连结AD、cD,四边形ABcD是所求作的四边形,如图4-13.大家比较一下,所作出的图形的外形一样吗?这是为什么呢?因为的大小不固定,所以四边形的外形不确定.③虽然四边形的边长不变,但它的外形改变了,这说明四边形没有稳定性.教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:
①四边形改变外形时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的外形就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据.举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.总结、扩展
.小结:
四边形外角概念、外角和定理.四边形不稳定性的应用和克服不稳定性的理论根据.2.扩展:如图4-15,在四边形ABcD中,求四边形ABcD的面积
八、布置作业
教材P128中4.九、板书设计
十、随堂练习
教材P124中1、2
补充:在四边形ABcD中,是四边形的外角,且,则度.在四边形ABcD中,若分别与相邻的外角的比是1:2:3:4,则度,度,度,度
7.钉子板上的多边形教案 篇七
溧阳市平桥小学
潘红星
教学目标:
1.经历画图、填表、分析数据、探索规律的过程,让学生自主发现钉子板上的钉子数与面积之间的关系。
2.初步感悟通过固定某些变量的值来探求其余变量的变化规律的科学思维方法。3.培养学生获取由简单到复杂的探究问题的方法和经验。教学过程:
一、认识钉子板
同学们,大屏幕上的是什么?今天我们要学习与钉子板有关的数学知识,老师没有带钉子板,怎么办,有没有替代品。
讲述:钉子板上的多边形是用橡皮筋围的,今天我们就用画的形式表示好吗?
二、揭题
1.今天我们学习的数学内容是什么? 生:钉子板上的多边形 师板书:钉子板上的多边形
师:你觉得我们今天会研究多边形的什么数学问题呢? 生:面积、周长……
2.师:今天我们就学习多边形的面积,想一想,今天学习的多边形面积还可能和什么有关系? 生:钉子板
师补充:钉子板上的钉子,你觉得会有什么样的关系呢? 生:钉子越多,面积越大
师:这只是你的猜想,要想得到证明,我们还要进行操作是吗? 师:我们从简单的图形学起 师:说一说上面图形的面积各是多少 说一说你是用什么方法的呢?
根据学生的回答板书:算 说一说你是用什么方法的 根据学生的回答板书:数
3.师提问:刚才我们说多边形的面积可能和什么有关系啊? 生:钉子数
4.多媒体出示:多边形边上的钉子数 一起读一读,我们要数什么 5.一起和老师数,师点生数 6.你发现了什么?
生:钉子数÷2=面积
…… 让3-4名学生说一说。
师:很难说,如果我们用字母表示就简单多了。
用s表示多边形的面积,用n表示多边形边上的钉子数你会表示吗? 学生根据自己的理解得到S=N÷2
三、引发矛盾
师:刚才我们的图上是不是还有4幅图形啊,我们一起来验证一下好吗? 师:你有什么想要说的
师:现在我们从不同中找相同,回头再看看前面4幅图,你有什么发现? 生:中间只有一枚钉子 师:点一点
师:你觉得刚才我们的这句话应该怎么说才更合适呢? 生:当中间只有一枚钉子时,师:如果中间钉子数用字母a表示,这个公式应该怎么表示。
四、反思与小结
师:刚才我们研究了什么,你能不能用一句话说一说。生:多边形的面积等于多边形边上的钉子数除以2。
五、迁移研究
师:接下来,我们应该研究什么了,生:A=2 师出示:两幅图,你还记得刚才的数据吗?说一说
师:现在拿出你的钉子板纸,在上面画一个中间有两枚钉子的多边形,并写出他的面积与边上的钉子数。生演示并汇报,师填写
师:你有什么发现,在小组里和大家说一说。指名说一说你的发现
师:刚才我们又研究了什么,你能不能用一句话说给大家听一听。研究A=3 师:你觉得接下来我们要研究什么了。在你的钉子板上画一画,小组里完成表格。迁移知识:如果A=4、5…..当A=0的时候呢?
学生利用学习研究单分别研究出A=2、3、4、5等多边形的面积与边上钉子数的关系。
师:象这样的研究我们还可以继续,如果你有兴趣的话,老师推荐你一本书有两个人。
出示两个关于这一数学现象研究的数学家。六:全课小结
8.圆与正多边形教案一 篇八
【教学目标】
经历相似多边形概念的形成过程,了解相似多边形的含义.【教学重难点】
重点:探索相似多边形的定义过程,以及用定义判断两个多边形是否相似.难点:探索相似多边形的定义过程.【教学过程】
一、课前准备
活动内容:图片收集(提前布置)以小组为单位,开展收集活动: 各尽所能收集生活中各类相似图形
二、情境引入(获取信息,体会特点)
1.活动内容:各小组派代表展示自己课前所收集得到的资料 2.教师展示课件(播放动画)
三、例题讲解
例:下列每组图形形状相同,它们的对应角有怎样的关系?对应边呢?(1)正三角形ABC与正三角形DEF;(2)正方形ABCD与正方形EFGH.1.各角对应相等、各边对应成比例的两个多边形叫做相似多边形.2.相似多边形对应边的比叫做相似比.3.相似用“∽”表示,读作“相似于”.四、合作学习
1.(想一想)如果两个多边形相似,那么它们的对应角有什么关系?对应边呢? 板书:相似多边形的对应角相等,对应边成比例
2.如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?
3.通过反例分析,使学生进一步理解相似多边形的本质特征.4.—块长3 m,宽1.5 m的矩形黑板,镶在其外围的木制边框宽7.5 cm,由边框的内外边缘所构成的矩形相似吗?为什么?
五、巩固练习活动内容:
2.如图,下面的两个菱形相似吗?为什么?满足什么条件的两个菱形一定相似?
六、活动与探究
如图,将一张长、宽之比为√2的矩形纸ABCD依次不断对折,可以得到矩形纸BCFE,AEML,GMFH,LGPN.(1)矩形 ABCD、BCFE、AEML、GMFH、LGPN 长与宽的比改变了吗?(2)在这些矩形中,有成比例的线段吗?(3)你认为这些大小不同的矩形相似吗?
七、课堂小结 本节课应掌握: 两个图形的相似必须同时满足:各角对应相等、各边对应成比例,两个条件缺一不可,两个图形不相似时,它们的对应角也可能相等(如两个矩形),或者对应边也可能对应成比例(如两个菱形).⑴全等图形是相似比为1的相似图形.(2)相似比具有顺序性,例如两个相似多边形,前一个多边形与后一个多边形的相似比为k,那么后一个多边形与前一个多边形的相似比为1/k(3)相似多边形的定义既可以作为相似多边形的性质,也可以作为相似多边形的判定依据.八、布置作业
9.《画多边形》优秀教案及课后反思 篇九
教材分析
《画多边形》是陕西科学技术出版社审查通过的四年级上册第5课教学内容,主要学习“多边形” 工具的使用方法。本课是画图单元中的一个重要组成部分,是在学生学习了画直线、画方、画圆的基础上,为学生学习创作组合图形等内容做好了铺垫。学生通过学习本课会为今天组合图形打下坚实的基础。
学情分析
学生对画图软件已经进行了一些基本操作,对相应工具的使用充满着好奇心,虽然在操作上表现出一定的差异,但四年级学生在三年级一年的学习过程中,对信息技术教学不在陌生,相比而言想象力比以前更丰富,更善于表现自己,有着较强烈的求知欲与不怕困难、勇于探索的决心,因此如何引导他们主动参与学习,使每个同学各尽其能、发扬特长、激发学生的求知欲和表现欲就成了本课教学成功与否的关键所在。
学生在复习“直线”和“椭圆”工具的使用方法后。通过想象利用两类工具组成成不同的图形,具有一定的把握,尝试过程中表现出积极、热情的参与教学过程。认知能力也在不断的提高中。
教学目标
知识与技能:学习“多边形”工具的使用方法,能运用“多边形”工具画多边形图形。
过程与方法:在画多形的过程中领会操作方法,发展学生计算机应用操作能力。
情感、态度与价值观:在学习过程中体验美、创造美、培养学生对信息技术的兴趣、爱好、特长,体验成功的喜悦,学会赏识自己和他人的.创作成果,提高学生的信息素养。
行为与创新:培养学生利用信息技术富有创造性地解决日常生活和学习中的具体问题的能力。
教学重点和难点
教学重点:“多边形”工具的使用方法,shift的功能使用。
10.圆与正多边形教案一 篇十
第四课-用重复命令画正多边形教案(清华版)
第四课――用重复命令画正多边形教案 教学目标 了解什么是嵌套,并能使用嵌套的方法画出复杂且有规律的图形。 学会用 SETPC 命令进行彩色绘图。 学会重复命令的格式及应用,能用它画出正多边形和其他简单图形。 教学重点 重复命令的格式、使用及技巧 教学难点:1. 对图形深入分析,找出其中规律性的部分,确定重复的动作,并转化为需重复执行的命令。 2. 重复命令的嵌套应用 课时划分 1课时 教学准备 PC Logo 系统+lanstar教学软件 教学过程 引入: 同学们的生活多姿多彩,创作出来的作品自然也应 该五彩斑斓。画一朵美丽而神奇的宝石花(见图4.1),把它送给善良的母亲、威严的爸爸、慈祥的爷爷奶奶,当然还有那些辛勤的老师。 1、分析图形,找出画法 这朵宝石花既美丽又神奇,一眼看去,不知道该如何下手。别着急,大家一起来帮小海龟想想办法。 提示:这朵宝石花是由正八边形旋转而成的。 数一数,图中有几个正八边形?每两个正八边形之间旋转的.角度又是多少呢? 2.用重复命令Repeat画正方形 正方形大家都会画。 FD┗┛80┗┛RT┗┛90 FD┗┛80┗┛RT┗┛90 FD┗┛80┗┛RT┗┛90 FD┗┛80┗┛RT┗┛90 一个边长为80的正方形就画好了。同学们,看看这4条语句,你们能发现什么规律吗? 哦,同样的语句重复了4次。天呀,要是想画正十边形、正一百边形,岂不要重复输入100遍相同的命令?太麻烦了!要是能直接告诉小海龟,重复执行4遍FD 80 RT 90命令就好了。 幸亏有了重复命令 Repeat,它可把要重复输人好几遍的相同命令用一条命 令来代替,见图 这可真替我们省了好多事。 FD 80 RT 90 FD 80 RT 90 = Repeat 4 [FD 80 RT 90] FD 80 RT 90 FD 80 RT 90 3、画正三角形 大家不难看出,小海龟画正三角形时重复的动作是:画一条边,并转120度角(180-60=120),如图4.3所示,可别忘了还要转角哟。 Repeat 3 [ FD 100 RT 120] 4、换支彩笔 要想让小海龟画出彩色图形,当然要给它配支彩笔。和第1课中设置图形窗口的背景色类似,单击工具栏上的“画笔色”按钮,然后选择需要的颜色就可以 了,见图4如图4.4 同样,也可以用设置画笔颜色命令SETPC┗┛“颜色代码”给小海龟换支彩笔 SETPC * 5.画正八边形 根据前面的学习,现在我们不难写出 画正八边形(见图45)的命令,命令如下: Repeat 8「FD 60 RT 360/8) 6.美丽的宝石花 大家知道这朵宝石花是由正八边形旋转一周而成的,仔细数一数,图中有几个正八边形? 对,8个。每两个正八边形之间旋转的角度就很好计算了,360/8怎么样,会画了吗? Reeat 8 [ Repeat 8 [ FD 60 RT 360/8] RT 360/8] 板书 1、分析图形,找出画法 2.用重复命令Repeat画正方形 3、画正三角形 教学反思 这里重复命令学生们刚刚吃透,紧接着就让学生们制作宝石花有点费力,要是用两课时效果就会很好,可以很好的引导学生在探索的过程中积极动口、动手、动眼、动脑,从而主动的获取知识,发展能力。我打破了“教师先讲重复命令的功能和使用格式,然后学生套这一格式进行练习”的传统的教学方法,
【圆与正多边形教案一】推荐阅读:
41多边形教案07-31
认识多边形教案10-10
相似多边形公开课教案10-16
小学三年级数学四边形教案09-01
体育教案一上教案08-29
一年级美术教案教案09-22
一年级美术教案 《蜗牛》-教学教案11-10
六一教案09-02
小学一年级语文《狐狸和乌鸦教案》教材教案08-21
回顾拓展一教案07-04