光电传感器原理及应用的探讨论文

2024-08-16

光电传感器原理及应用的探讨论文(精选11篇)

1.光电传感器原理及应用的探讨论文 篇一

《传感器原理与应用》教学方法探讨

摘要:根据“传感器原理及应用”这门课程的特点,以课堂高效率教学高质量为教学目的出发,本文探讨了从四个方面进行教学方法的改进。

关键词: 传感器原理及应用 天之信多媒体资源 实验教学 任务式教学

《传感器原理及应用》是电子信息科学系的主干专业课, 具有较强实践性,课程涉及的知识面广,是一门工程性、应用性都非常强的课程。其教学质量的好坏,直接影响到许多后续专业课的教学效果。该课程知识覆盖面广、内容多而且更新发展快,理论性和应用性都很强,再加上教学过程中的一些难点,为了达到课堂高效率教学高质量,迫切需要改进教学方法。本人从事了一段时间的传感器课程的教学,对教学方法有了一些个人的看法,可以从以下四个方面进行尝试,以达到课堂高效率,教学高质量。

一、充分利用多媒体资源,将实际应用的场景融入到教学课件中,让学生对这门课程产生浓厚的学习兴趣。给学生展示传感器的实际应用场景,使理论知识在实际应用场合中慢慢渗入,充分调动学生的积极性,在课堂让学生思维充分动起来,充分发挥学生的主观能动性,引导学生积极思维,从思想上行动起来,把课堂变成老师和学生共同学习,解决问题的场所。在讲解某种具体的传感器之前,演示几个生活中的传感器实例,例如:在进行电容式传感器的教学之前,用多媒体播放几个实际的应用实例,电容式扩音器的示意图和工作过程,电容式接近开关的工作原理,电容式双联收音机等的工作原理,让学生在进入具体的理论知识学习之前对这种传感器有个感性认识,提高学生的积极性和兴趣。再比如,在讲温度传感器时,如果配以动画演示热电偶中电流是如何随着两端温度的变化而变化时,学生就会很容易接受温度传感器的工作原理。

二、将实际事例的简明工作原理演示之后,再来解剖实际应用场景中的电路框图,这样让学生对传感器的理解从感性过渡到理性,对所用到的传感器的工作原理进行讲解说明,让学生掌握该传感器的工作原理和设计思路;进一步分析传感器的测量电路,让学生了解传感器的设计原理。例如,当教师讲解了红外自动干手器的工作原理时,再配上实际电路进行具体分析,会激发学生的自己动手设计的欲望,也会对相应的传感器了解得更透彻。

三、实验教学,单纯的理论知识对于学生而言比较枯燥无味,应配以实验课让学生对具体的传感器有所接触,加深印象。例如教师在讲解电桥式测量电路时过于理论化,学生只是硬性的记住公式,如果配以实验课用CSY-传感器系统实验仪验证单臂、半桥、全桥的性能,比较它们的测量结果了解交流供电的四臂应变电桥的原理、工作情况和实际应用,会让学生对电桥式,相敏检波电路有比较深刻的印象。实验教学不仅能帮助学生巩固和加深理解所学的理论知识,更重要的是能训练学生的实验技能,培养学生的动手能力,树立工程实际观点和严谨的科学作风,使他们能独立的进行实验。

四、任务式教学,布置相关的任务,在学生掌握了一定程度的传感器原理之后自己根据实际应用去设计合适的传感器。要求学生了解传感器的选型原则,让学生掌握不同传感器的优缺点以及相应的应用场合。例如,液位的测量有很多种测量方式,分接触式和非接触式,有浮体式、电容式、差压式、超声波式、光纤式、核辐射式等。那么要测量储水池的液位应该选择哪种传感器呢?密闭容器的液位检测又该怎么选择?布置适当的任务不仅能让学生加深对所学知识的印象,更能培养学生的设计思维和激发学生的设计欲望。

在教学中,结合多媒体等现代教学手段,充分利用丰富的网上教学资源,对特殊抽象或微观内容,利用动画提高教学效果,激发学生的学习兴趣。在课堂上将基本原理和方法讲清楚讲透彻之后,实验教学紧跟理论教学,使理论教学和实验教学两块内容相结合,为学生提供验证理论知识的条件,培养学生的探索精神。由于本课程是一门实践性很强的专业基础课程,所以在学生掌握了一定程度的传感器知识之后,布置适当的任务,让学生自己根据实际应用去设计合适的传感器,提高学生的应用能力,真正做到学以致用。

2.光电传感器原理及应用的探讨论文 篇二

1电子式互感器的类型及原理介绍

1.1光电电流互感器的类型与原理

1.1.1有源型OCT

有源型的OCT的原理是利用有源器件调制技术, 把罗柯夫斯基线圈测量出的信号经过积分运算得出电流模拟信号, 模/数转换 (A/D) 电路将积分器输出的信号转换成数字信号, 然后通过电一光转换器装置将电信号转换成光信号, 再通过光纤传输到互感器低压侧信号处理电路, 有型OCT原理图1所示。

有源型OCT的关键部件为罗柯夫斯基线及积分器。罗柯夫斯基线圈是一种饶制在非磁性骨架上的空心线圈, 具有精度高、稳定性好、抗干扰能力强、动态范围宽、体积小、重量轻、造价低、线性度好等一系列优点。其工作原理如图2.

罗柯夫斯基线圈直接套在被测量的导体上, 导体中流过的交流电流在导体周围产生一个交替变化的磁场, 从而在线圈两端感应出一个与电流变化成比例的交流电压信号e (t) 。

式中di/dt则是电流的变化率, L为线圈的电感。为还原电流i (t) , 通过对交流电压信号积分并运算得出所要测量的电流值其数学表达式为:

有源型OCT的传感器和A/D转换部件是需要电源供电的, 目前常用的供电方式主要有利用特制电流互感或电容分压器从母线上取电能:激光供电、太阳能供电及蓄电池供电等。

1.1.1无源型OCT

基于法拉第 (Faraday) 磁光效应的电子式互感器Faraday磁致旋光效应是指在光学各向同性的透明介质中, 外加磁场可以使在介质中沿磁场方向传播的平面偏振光的偏振面发生旋转。一束线偏振光通过置于磁场方向与光的传播方向平行, 则出射线性偏振光与入射线性偏振光的偏振平面产生旋转, 旋转角@正比于磁场沿着偏振光通过材料路径的线积分即:

式中, V为代表光纤材料特性的维尔德常数, H为光传播方向上的磁场强度, L为光路长度, 为磁导率, N为绕载流休的光圈数, I为被测电流。

摘要:本文介绍了光电电流互感器和光电电压互感器的类型及原理, 并将它们与传统互感器进行比较。在此基础上, 提出一些关于光电互感器存在的问题和发展前景的观点。

关键词:光电电流互感器,光电电压互感器,光电互感器,传统互感器,数字化变电站

参考文献

[1]高翔.数字化变电站应用技术[M].北京:中国电力出版社.2 0 0 8

[2]黄欣, 贺春.IEC 61850标准对电力系统工作的影响[J].继电器.2007, 35 (13) :53~56

[3]IEC 61850变电站通信网络和系统协议[s]

3.光电传感器原理及应用的探讨论文 篇三

自2013年起,检品机开始进入应用高潮,检品机生产厂家如雨后春笋般不断涌现,目前国内检品机生产厂家主要有北京大恒图像视觉有限公司、北京凌云光视数字图像技术有限公司、征图新视科技有限公司、天津长荣印刷设备股份有限公司、深圳市科拓科技开发有限公司等。如果说检品机的检测系统相当于人的大脑,采集相机相当于人的眼睛,那么光电传感器就是人眼的重要组成部分,它的主要作用是,判定有无产品或其他异物经过及其数量等,并产生信号。目前市场上各厂家生产的光电传感器原理基本相同,根据检测距离和使用场所的不同,大致可以分为4种类型,即对照型、反射片型、近接反射型和光线型。对于不同表面特性的印品,应选择不同类型的光电传感器,以获取最好的检测效果。

常规印品主要是指采用白卡纸、白底银卡纸、白底金卡纸以及其他以白色或灰色为底纸的纸张作为承印材料的印品,涵盖了目前市场上的大部分产品。这些产品的质量检测,适合使用对照型、反射片型和近接反射型光电传感器,具体的选择则需要根据印品的表面特性以及光电传感器安装场所的实际情况进行。

对照型光电传感器由投光器和收光器两部分组成,一端投光,一端收光,中间如有异物干扰,则产生信号,原理如图1所示。

从图1中可以看出,对照型光电传感器的检测距离较长,投光镜头和收光镜头的面积较小,因此在安装时,配线和两端的校准比较困难,稍有位移,就会产生异常信号,对于高速或者有震动的作业环境,使用有所不便。

与对照型光电传感器相比,反射片型光电传感器则在很大程度上增加了校准的弹性,在安装环境的选择上更加广泛,安装和配线均比较简易。

反射片型光电传感器信号产生原理如图2所示。从中可以看出,信号的产生和接收均在同一个点,利用反射片(如图3所示)接收反射回来的光线,中间如有异物阻隔,则产生信号。反射片是一片具有碎块反光材质的银色塑料片,其校准弹性较大,而且由于其反射面面积较大,反射面上的碎块从不同的角度反射回来的光线,容易被收光镜头接收。但正因为这样,也存在一定的弊端,光线经过多次反射以后,接收到的能量自然减弱,因此在安装时,必须确保投光镜头和反射片之间的距离是对照型光电传感器的一半,且投光镜头距离物体3~5cm为宜。

需要特别注意的是,表面烫金或者表面反光较强的印品(如图4所示),对于反射片型光电传感器的正常工作会产生一定的干扰,即当投光镜头发出的光线碰到如图4所示的该类印品或者某印品的该类部位时,则会产生误触发信号。笔者就曾在生产过程中碰到过类似问题,印品经过光电传感器以后,系统立即报告信号错误,排除光电传感器本身异常、纸张歪斜等情况以后,挪动投光镜头的位置,或者将投光镜头与反射片交换位置安装,则不再出现异常信号,这就说明印品的表面特性干扰了光电传感器的正常工作。对此,需要在安装时避开该类部位或者将投光镜头和反射片对调安装。然而,由于受到机械空间或者实际布线情况的影响,这种做法往往不能获得很好的效果,此时我们可以选择一种更为理想的解决方案——近接反射型光电传感器。

近接反射型光电传感器信号产生原理如图5所示。近接反射型光电传感器的投光与收光均在一个镜头内,投光器发出的光线经过物体表面后反射回来,再由收光器接收,从而产生信号。不难看出,近接反射型光电传感器可以有效避免反射片型光电传感器遇到的尴尬,且安装和校准都更加容易,但仍然受物体表面反射情况的影响,检测功能也会因此有所变化。

笔者在生产过程中就曾遇到过这样的问题,印品在印刷过程中需要用黑墨打底,因此导致背面蹭脏,正面也存在类似缺陷。但经检品机检测后,这类缺陷却并未被识别出来,而是堂而皇之地进入成品中,除此之外的其他缺陷也未能被识别出来并剔除。为了分析该现象的真正原因,笔者做了如下测试,将其中一张缺陷印品的背面贴上电工胶布,在光电传感器前经过,在2~5cm的距离内进行了多次测试。

测试结果显示,光电无信号。这足以说明,对于黑色印品,使用近接反射型光电传感器容易出现遗漏,试想,如果该缺陷出现在正式生产中而不被发现,其结果可想而知。

现代包装纸盒,尤其是出口烟包,很多都采用黑卡纸,鉴于上述近接反射型光电传感器所导致的缺陷遗漏,不建议此类情况下选择该光电传感器,而是应当选用反射片型光电传感器,检测效果较为明显。

随着市场需求的不断变化,光电传感器也在不断升级和优化。目前市场上还有一种光线型光电传感器,其原理不外乎光线的发送与接收,不同的是,光线型光电传感器是利用光线电缆,将在同一镜头内的投光器引导到需要安装的位置,在高温、有限空间、震动、突出物等环境下,使用较为便捷,但也需要根据印品的实际表面特性来进行选择,在此不作赘述。

4.传感器原理及应用期末试题3 篇四

一.判断题.(本题共10分,对则打“√”,不对则打“×”)

1.A/D转换就是把模拟信号转换成连续的数字信号。()

2.固有频率fn=400Hz的振动子的工作频率范围为f > 400Hz。()

3.信号在时域上波形有所变化,必然引起频谱的相应变化。()

4.一台仪器的重复性很好,但测得的结果并不准确,这是由于存在随机误差的缘故。()

5.一般来说测量系统的固有频率越高,则其灵敏度就越低。()

6.交流电桥的输出信号经放大后,直接记录就能获得其输入信号的模拟信号了。()

7.测量小应变时,应选用灵敏度高的金属丝应变片,测量大应变时,应选用灵敏度低的半导体应

变片。()

8.传递函数表征了系统的传递特性,并反映了物理结构,因此凡传递函数相同的系统,其物理结

构必然相同。()j2ft

9.x(t)edt称为信号x(t)的频率响应函数。()

10.作为温度补偿的应变片应和工作应变片作相邻桥臂且分别贴在与被测试件相同的置于同一温度 场的材料上。()

二.选择题(共24分,每空1.5分,每题只有一个正确答案)

1.压电式加速度计测量系统的工作频率下限取决于()

a.加速度计力学系统的频率特性; b.压电晶体的电路特性;c.测量电路的时间常数。

2.用惯性式加速度计进行测量,为保证相位关系不变,应选择适当的阻尼比β,一般取β=()

或β=();而对惯性式位移传感器应有β=()

a.β=0;b.β=0.7;c.β=1;d.β=0.86

3.要测量x(t)=5aSin40πt+aSin2000πt的振动位移信号,为了尽量减少失真,应采用()的惯性加速度计。

a.fn=15Hz、β=0.707;b.fn=1000Hz、β=0.707;c.fn=50kHz、β=0.04

4.压电式加速度传感器的阻尼率一般为()

a.β>1;b.0.707<β<1;c.β=0.707;d.β<<0.707

5.描述非周期信号的数学工具是()。

a.三角函数; b.拉氏变换; c.付氏变换; d.付氏级数

6.复杂周期信号的频谱是()

a.离散谱; b.连续谱; c.δ函数; d.sinc函数

7.对某二阶系统输入周期信号X(t)=A0sinωmt,则系统输出信号有以下特性()。

[注:ωm>ωn]

a.幅值、频率、相位皆不变;b.频率改变,幅值、相位不变;c.幅值、相位改变,频率不变;

d.相位不变,幅值、频率改变

8.测量等速变化的温度时,为了减小测量误差,希望测温传感器的时间常数()a.大些好; b.小些好; c.要适中; d.可不考虑

9.半导体应变片是根据()原理工作的;压电式加速度计的工作原理是基于()a.电阻应变效应;b.压阻效应;c.压电效应;d.电磁效应

10.金属丝应变片在测量某一构件的应变时,其电阻的相对变化主要由()引起的。a.贴片位置的温度变化;b.电阻丝几何尺寸的变化;c.电阻材料的电阻率的变化

11.用一缓变综合信号e(t)=Acos2πt+Bcos200πt调制一栽波e0(t)=Esin2000πt,得到的调幅波的频带宽度为()

a.(1000-10)(1000+10)Hz;b.-(1000+100)(1000+100)Hz;c.(1000-100)(1000+100)Hz;

12.既能检波又能检相的电路称为()

a.桥式整流; b.相位鉴频; c.相敏检波; d.直流放大

13.常用解决光线示波器低频振子阻尼率β达到0.7的方法是()

a.充入硅油;b.保证要求的外阻;c.串联一合适电阻;d.并联一合适电阻

14.某间接测量的函数式为y=a0x1x2, 则y的标准误差为()(式中测量量值x1、x2的标准误差)

.a.d.222y(x1x2)x1、x2 分别为直接;;b.222ya0(x1x2);c.2222y(a0x12x1x2x2)2222ya0(x12x2x2x1)

15.把连续时间信号进行离散化时产生混迭的主要原因是()

a.记录时间太长; b.采样时间间隔太宽; c.记录时间太短; d.采样时间间隔太窄

三.[本题共16分]

1.(8分)求理想一阶系统的拉氏传递函数,根据所求传递函数写出其频率响应函数,系统的幅频特性及相频特性表示式,并用简图画出其幅频特性。[注:一阶系统的运动微分方程为:dy(t)y(t)A0x(t)dt]

2.(4分)压电测压传感器与电荷放大器相接时,为能测量静态压力信号即防止静电泄漏,从放大器本身出发,应采取哪些措施?[提示:等效电路见图,运动方程为:

RCdu0dFu0Rddtdt,qdF,ccpcE,RRp//Ri,cp为压电晶体等效电容,Rp为传感器输出电阻,cE为电缆电容,Ri为电压放大器的输入电阻。]

di3.(4LRie

[注:微分方程为: dt(R=Ri+RL),e为感应电动势,L为等效电感,RL为传感器的等效电阻,Ri为放大器输入电阻]

四.(本题共16分)

1.(4分)叙述测量系统实现不失真测量的条件。

2.(10分)有人将某二阶系统的幅频特性曲线绘成了如图所示形状,请指出图中有何问题?当输入图示三种信号时,问系统输出有无失真(假定相频特性符合要求)。

3.(2分)为何在调节二阶系统β时,一般都取β=0.6~0.8?

五.(10分)应变筒式测压传感器与应变管式测压传感器主要区别有哪些?简述应变筒式测压传感器是如何进行温度补偿的?

六.(8分)永磁式感应测速传感器的磁头件安装有何要求?描述该传感器中位移线圈的绕制方法,该传感器速度线圈采用串联的目的是什么?

七.(6分)用镍铬—镍硅热电偶测炉温。当冷端温度T0=40 0C时,测得热电势为E(T,T0)=39.17mv,若冷端温度变为常温20 0C测该炉温时,则应测得热电势为多少mv?

[附:已知该热电偶有E(40,0)=1.61mv, E(-40,0)=-1.50 mv, E(20,0)=0.80mv, E(-20,0)=-0.77mv ]

八.(4分)为使测量具有普遍的科学意义,测量仪器必须具备哪些条件?线性测量系统应具有的两个重要特性是什么?

5.光电传感器原理及应用的探讨论文 篇五

光电传感器因其灵敏轻便等优势而被广泛应用于自动化设备检测装置中。20世纪80年代,美国军事领域开始应用光电传感器信息融合技术;2013年3月15日,美国国防先期计划研究局(DARPA)公布了在阿灵顿召开的已进入第二阶段的MIST-LR项目会议,指出在未来的第三阶段,将开发出能够提升飞行器性能的原型系统传感器,极大发挥其在民用和军事两个方面的助推器作用。

1 应用必要

第一,光电传感器获取信息的过程实际是一个多对一的对应抽样过程,在将客观世界空间的信息传输至传感器这一过程中信息丢失的问题难以避免;第二,军事领域中光电传感器的数量庞大,急需处理的信息量也繁多冗杂,这些都会给人工处理带来一定困扰,而光电传感器信息融合技术的应用巧妙地解决了这一信息综合处理的难题;第三,应用环境决定了光电传感器性能发挥的好坏,但截至目前尚未有一个国家可以开发出适用于任何环境下且性能优于其他类型的光电传感器。

2 概念优点

光电传感器信息融合的过程正是为了完成目标分类、识别及跟踪等任务而进行信息自动分析综合处理的过程。军事领域中的目标识别及跟踪可以实现光电传感器目标属性中的监视功能,有利于精确定位与预估判决。我国航天技术的高速发展离不开当前最热门的技术之一――航天技术上光电传感器信息融合技术,它能够有效提高空间的分辨率和系统的可靠性,无疑成为我国GDP增长的“助推器”。

3 工作原理

光电传感器能够有效检测到光强度变化的情况并将光强度的变化转换为电信号的变化。通常情况下,光电传感器这种小型电子设备由三部分组成:发送器、接收器与检测电路。发送器负责向目标发射来源于发光二极管、激光二极管及红外射二极管等的光束,不间断发射出的光束经过像光圈、透镜这种光学元件后达到由光电二极管、光电三极管及光电池构成的接收器中,接收器接收到光束后会将其传输至能够过滤该信号是否有效并决定是否应用的检测电路。详细流程见下图所示。

需要强调的一点是发射板和光导纤维作为光电传感器结构元件的一种也独具特色。众所周知,三角形的结构最为稳定,因此由极细小的三角锥体反射材料组成的三角反射板是一种能保证光束可以准确无误地从反射板返回的发射装置,其结构极其稳固且具有极强的实用性。

4 应用领域

4.1研制抄表系统

为及时结算用户的电费,一般由电力部门派专门的抄表人员到有关用户处定期走家串户地查看、抄写设置在现场的电能表,通过人工读取、记录、计算和收费。这不仅浪费人力,而且还会因人工读取造成不必要的误差,给用户带来不必要的麻烦和损失,甚至会发生不法分子假冒抄表人员入室作案而影响社会治安。因此,无论是电力部门还是用户们均迫切要求改变当前的落后状态。随着微电子技术、传感器技术、计算机技术及现代通讯技术的发展,可以利用光电传感器来研制自动抄表系统。

电能表的铝盘受电涡流和磁场的作用下产生的转矩驱动而旋转,采用光电传感器则可将铝盘的转数转换成脉冲数。如在旋转的光亮的铝盘上局部涂黑,再配以反射式光电发射接收对管,则当铝盘旋转时在局部涂黑处便产生脉冲,并可将铝盘的转数采样转换为相应的脉冲数,并经光电耦合隔离电路,送至CPU的T0端口进行计数处理。采用光电耦合隔离器可以有效地防止干扰信号进入微机,再结合其它传输方式便可形成自动抄表系统。目前自动抄表系统没有大规模使用与当前的技术有莫大关系,这套技术还有很多需要改进之处,相信在未来几年随着技术的发展,自动抄表将在全国范围内实现。

4.2节能灯具设计

光敏传感器、红外传感器、颜色传感器已进入各种自控节能LED照明系统的设计方案之中,它们的自主控制、方便应用使得不少公共照明LED灯具和居家照明灯具实现智能化。光电传感器可以协助公共照明的LED灯具实现灯光的自动开启关闭,可以智能的感应人和车辆进出而自动开关灯光,可以智慧的控制LED灯光开启的时间和控制亮度,甚至按人类的意愿自动调整光线的色温,营造人类想要的光氛围。

4.2.1光敏传感器应用

光敏传感器中最简单的电子器件是光敏电阻,它能感应光线的明暗变化,输出微弱的电信号,通过简单电子线路放大处理,可以控制LED灯具的自动开关。对于远程的照明灯具,如街灯、庭院灯、草坪灯等都可经济而简单的实现节能自动控制。太阳能路灯本身是利用太阳光发电、储能的LED照明灯具,无需电网供电也就无需架设成本不菲的输电线路,因此使用光敏传感器可以实现极低成本、自动开启关闭的节能管理。

4.2.2红外传感器应用

红外热释电传感器(PIR)在LED照明中的应用已有近十年的`历史。红外传感器的视角有限,需要搭配菲涅尔透镜才能扩大探测区,才能监视移动的热源(人或车)。菲涅尔透镜有两个作用:一是聚焦作用,将热释红外信号折射在PIR上;二是将探测区内分为若干个明区和暗区,使进入探测区的人能以温度变化的形式在PIR上产生变化的热释红外信号。

4.3航天技术应用

我国神舟十号发射成功后到与天宫一号的自动交会对接,2000多项航天技术成果移植国民经济成为经济发展“倍增器”,其中光电传感器技术发挥了重要作用。神舟十号和天宫一号对接机构十分复杂,由上百个传感器、上千轴承组合而成。对接任务要求严丝合缝且不能漏气。另外考虑到飞行器在太空环境中失重要经历高低温的变化,因此必须保证对接时不出现故障。手控交会对接时要有精确的传感器测量设备,不断测量两个飞行器之间的距离、相对速度和姿态等,稍有差池后果不堪设想。最后对接时,要求轴向误差≤18cm。这些对航天员的身心都是极大的挑战,要求他们具有极高的眼手协调性、操作精细性和过硬的心理素质等。在交会对接的过程中,航天员需要紧盯电视图像,根据实时传输的数据让两个航天器一点点逼近,根据仔细计算决定速度变化方案完成交会对接,其中传感器起到决定性作用,为实现航天梦奠定最强基础。

4.4工业自动化装置

光电传感器具有非接触、响应快、性能可靠等特点,在工业上常用于非接触测量物位、距离和条码等信息,因此在工业自动化装置和机器人中获得广泛应用。随着现代检测技术的发展出现了很多新型的光电传感器,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。相关应用行业的系列产品如下:

1)光电式烟雾报警器。没有烟雾时,发光二极管发出的光线直线传播,光电三极管没有接收信号,没有输出;有烟雾时,发光二极管发出的光线被烟雾颗粒折射,使三极管接受到光线,有信号输出,发出报警。如今频遭吐槽的雾霾天气说明环境污染问题严重,而光电式烟雾报警器则可通过光在烟道里传输过程的变化检测到烟道中的烟尘浊度;2)点钞机的计数传感器。具有结构微型化、操作简便化、使用耐用型等特点的点钞机在我们的日常生活中应用频繁,其不光在金融机构中被大量使用,也逐渐成为一些大型企事业单位必备的办公用品,成就其的正是结构简单、响应速度快、精确度高的光电传感器。点钞机的技术传感器采用两组由一个红外发光二极管和一个接收红外光的光敏三极管组成的红外光电传感器,没有钞票时,接收管受光照导通而输出为0;有钞票时,接收管光通量不足而输出为1且产生一个脉冲信号,经检测电路输入至负责计数和显示的单片机。只有不断提升光电传感器的性能,才能满足商业经济和财务自动化日新月异变化而产生的高要求。

参考文献

[1]黄斌.基于多传感器信息融合的节能控制系统.测控技术,2013(4).

[2]赵娟妮.多传感器数据融合技术及其在光伏电站监控系统中的应用.科技信息,2013(7).

[3]魏宏飞,赵慧.多传感器信息融合技术在火灾报警系统的应用[J].现代电子技术,2013(6).

6.振动传感器原理与应用 篇六

在高度发展的现代工业中,现代测试技术向数字化、信息化方向发展已成必然发展趋势,而测试系统的最前端是传感器,它是整个测试系统的灵魂,被世界各国列为尖端技术,特别是近几年快速发展的IC技术和计算机技术,为传感器的发展提供了良好与可靠的科学技术基础。使传感器的发展日新月益,且数字化、多功能与智能化是现代传感器发展的重要特征。

一、工程振动测试方法

在工程振动测试领域中,测试手段与方法多种多样,但是按各种参数的测量方法及测量过程的物理性质来分,可以分成三类。

1、机械式测量方法

将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录,常用的仪器有杠杆式测振仪和盖格尔测振仪,它能测量的频率较低,精度也较差。但在现场测试时较为简单方便。

2、光学式测量方法

将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。如读数显微镜和激光测振仪等。

3、电测方法

将工程振动的参量转换成电信号,经电子线路放大后显示和记录。电测法的要点在于先将机械振动量转换为电量(电动势、电荷、及其它电量),然后再对电量进行测量,从而得到所要测量的机械量。这是目前应用得最广泛的测量方法。

上述三种测量方法的物理性质虽然各不相同,但是,组成的测量系统基本相同,它们都包含拾振、测量放大线路和显示记录三个环节。

1、拾振环节。把被测的机械振动量转换为机械的、光学的或电的信号,完成这项转换工作的器件叫传感器。

2、测量线路。测量线路的种类甚多,它们都是针对各种传感器的变换原理而设计的。比如,专配压电式传感器的测量线路有电压放大器、电荷放大器等;此外,还有积分线路、微分线路、滤波线路、归一化装置等等。

3、信号分析及显示、记录环节。从测量线路输出的电压信号,可按测量的要求输入给信号分析仪或输送给显示仪器(如电子电压表、示波器、相位计等)、记录设备(如光线示波器、磁带记录仪、X—Y 记录仪等)等。也可在必要时记录在磁带上,然后再输入到信号分析仪进行各种分析处理,从而得到最终结果。

二、传感器的机械接收原理

振动传感器在测试技术中是关键部件之一,它的作用主要是将机械量接收下来,并转换为与之成比例的电量。由于它也是一种机电转换装置。所以我们有时也称它为换能器、拾振器等。

振动传感器并不是直接将原始要测的机械量转变为电量,而是将原始要测的机械量做为振动传感器的输入量,然后由机械接收部分加以接收,形成另一个适合于变换的机械量,最后由机电变换部分再将变换为电量。因此一个传感器的工作性能是由机械接收部分和机电变换部分的工作性能来决定的。

1、相对式机械接收原理

由于机械运动是物质运动的最简单的形式,因此人们最先想到的是用机械方法测量振动,从而制造出了机械式测振仪(如盖格尔测振仪等)。传感器的机械接收原理就是建立在此基础上的。相对式测振仪的工作接收原理是在测量时,把仪器固定在不动的支架上,使触杆与被测物体的振动方向一致,并借弹簧的弹性力与被测物体表面相接触,当物体振动时,触杆就跟随它一起运动,并推动记录笔杆在移动的纸带上描绘出振动物体的位移随时间的变化曲线,根据这个记录曲线可以计算出位移的大小及频率等参数。

由此可知,相对式机械接收部分所测得的结果是被测物体相对于参考体的相对振动,只有当参考体绝对不动时,才能测得被测物体的绝对振动。这样,就发生一个问题,当需要测的是绝对振动,但又找不到不动的参考点时,这类仪器就无用武之地。例如:在行驶的内燃机车上测试内燃机车的振动,在地震时测量地面及楼房的振动„„,都不存在一个不动的参考点。在这种情况下,我们必须用另一种测量方式的测振仪进行测量,即利用惯性式测振仪。

2、惯性式机械接收原理

惯性式机械测振仪测振时,是将测振仪直接固定在被测振动物体的测点上,当传感器外壳随被测振动物体运动时,由弹性支承的惯性质量块将与外壳发生相对运动,则装在质量块上的记录笔就可记录下质量元件与外壳的相对振动位移幅值,然后利用惯性质量块与外壳的相对振动位移的关系式,即可求出被测物体的绝对振动位移波形。

三、振动传感器的机电变换原理

一般来说,振动传感器在机械接收原理方面,只有相对式、惯性式两种,但在机电变换方面,由于变换方法和性质不同,其种类繁多,应用范围也极其广泛。

在现代振动测量中所用的传感器,已不是传统概念上独立的机械测量装置,它仅是整个测量系统中的一个环节,且与后续的电子线路紧密相关。

由于传感器内部机电变换原理的不同,输出的电量也各不相同。有的是将机械量的变化变换为电动势、电荷的变化,有的是将机械振动量的变化变换为电阻、电感等电参量的变化。一般说来,这些电量并不能直接被后续的显示、记录、分析仪器所接受。因此针对不同机电变换原理的传感器,必须附以专配的测量线路。测量线路的作用是将传感器的输出电量最后变为后续显示、分析仪器所能接受的一般电压信号。因此,振动传感器按其功能可有以下几种分类方法:

按机械接收原理分:相对式、惯性式;

按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式;

按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。

以上三种分类法中的传感器是相容的。

1、相对式电动传感器

电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。

相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。

2、电涡流式传感器

电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。

3、电感式传感器

依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。

4、电容式传感器

电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。

5、惯性式电动传感器

惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。

根据电磁感应定律,感应电动势为:u=Blx&r

式中B为磁通密度,l为线圈在磁场内的有效长度,r x&为线圈在磁场中的相对速度。

从传感器的结构上来说,惯性式电动传感器是一个位移传感器。然而由于其输出的电信号是由电磁感应产生,根据电磁感应电律,当线圈在磁场中作相对运动时,所感生的电动势与线圈切

割磁力线的速度成正比。因此就传感器的输出信号来说,感应电动势是同被测振动速度成正比的,所以它实际上是一个速度传感器。

6、压电式加速度传感器

压电式加速度传感器的机械接收部分是惯性式加速度机械接收原理,机电部分利用的是压电晶体的正压电效应。其原理是某些晶体(如人工极化陶瓷、压电石英晶体等,不同的压电材料具有不同的压电系数,一般都可以在压电材料性能表中查到。)在一定方向的外力作用下或承受变形时,它的晶体面或极化面上将有电荷产生,这种从机械能(力,变形)到电能(电荷,电场)的变换称为正压电效应。而从电能(电场,电压)到机械能(变形,力)的变换称为逆压电效应。

因此利用晶体的压电效应,可以制成测力传感器,在振动测量中,由于压电晶体所受的力是惯性质量块的牵连惯性力,所产生的电荷数与加速度大小成正比,所以压电式传感器是加速度传感器。

7、压电式力传感器

在振动试验中,除了测量振动,还经常需要测量对试件施加的动态激振力。压电式力传感器具有频率范围宽、动态范围大、体积小和重量轻等优点,因而获得广泛应用。压电式力传感器的工作原理是利用压电晶体的压电效应,即压电式力传感器的输出电荷信号与外力成正比。

8、阻抗头

阻抗头是一种综合性传感器。它集压电式力传感器和压电式加速度传感器于一体,其作用是在力传递点测量激振力的同时测量该点的运动响应。因此阻抗头由两部分组成,一部分是力传感器,另一部分是加速度传感器,它的优点是,保证测量点的响应就是激振点的响应。使用时将小头(测力端)连向结构,大头(测量加速度)与激振器的施力杆相连。从“力信号输出端”测量激振力的信号,从“加速度信号输出端”测量加速度的响应信号。

注意,阻抗头一般只能承受轻载荷,因而只可以用于轻型的结构、机械部件以及材料试样的测量。无论是力传感器还是阻抗头,其信号转换元件都是压电晶体,因而其测量线路均应是电压放大器或电荷放大器。

9、电阻应变式传感器

电阻式应变式传感器是将被测的机械振动量转换成传感元件电阻的变化量。实现这种机电转换的传感元件有多种形式,其中最常见的是电阻应变式的传感器。

7.光电传感器原理及应用的探讨论文 篇七

《传感器原理及应用》是测控技术与仪器专业一门重要的专业主干课, 内容涵盖各类传感器的工作原理、基本结构、相应的测量电路, 以及在各个领域中的应用。该课程是一门学科交叉、内容综合的课程, 涉及的知识面广、内容多、跨度大、需要理论结合实际, 仅采用传统课堂教学模式已经不能满足当前教育发展的需求。随着计算机技术的发展和互联网时代的到来, 基于WEB的网络教学得到了越来越广泛地应用, 使用教学网站能够跨越时间和空间的限制, 是对课堂教学的有效补充。网站可以充分利用网络的实时性、普及性和便利性, 提供一种有效的手段, 来引导学生进行自主学习, 利用文本、动画、声音等多种多媒体的有效组合, 帮助学生更好地理解该课程的重点与难点, 激发学生自主学习的积极性, 培养学生的想象力, 提高学习的效率和效果, 同时还能够实现优质教学资源的网络共享。

我校目前已经建立起集开放性、共享性、交互性为一体的《传感器原理及应用》课程网站, 并在全国多媒体大赛中获奖, 受到了老师和学生的广泛好评。

二、网站建设的开发工具及运行环境

本网站的开发工具为Dreamweaver、ASP和ACCESS数据库。Dreamweaver是一款著名的网页编辑器, 它提供的网站管理、所见所得、CSS设计工具、设计模板等为网站开发人员带来了许多便利。ASP (Active Server Page) 意为“动态服务器页面”, 它是微软公司开发的代替CGI脚本程序的一种应用, 它可以与数据库和其他程序进行交互, 是一种简单、方便的编程工具。采用ASP开发的网站具有开发效率高、运行速度快、扩展性好等优点。网站结构采用的是B/S (Browser/Server) 浏览器/服务器结构, 以IIS为系统运行服务器。

三、网站结构总体设计

网站主要包括两大部分:一是前台系统, 即访问者能看到的页面, 另一部分是后台管理系统, 用于管理员对整个网站的管理维护。

1. 网站前台。

该网站的首页如图1所示。首页有课程简介和相关链接, 通过课程公告发布最新的课程信息。网站主要内容以菜单方式展示, 操作简便, 包括课程概况、教学纲要、理论教学、实践教学、素材资源、师生互动等模块。

课程概况模块由课程介绍、课程特色和师资队伍三部分组成。

教学纲要模块提供了教学大纲和电子教材。在教学大纲中介绍了该课程的教学目标, 阐述了各章节的知识点、突出重点和难点。

理论教学模块是整个网站的主体, 分为教学视频、教学课件和题库三部分。教学视频栏目中提供了课程上课录像。教学课件既支持在线观看, 也可下载到本地。每一章都按照学习目标、课程内容、典型习题和课后作业四部分组织内容, 规整清晰, 能够在教学过程中营造和谐、生动的教学情境, 激发学生乐学的心理需求, 具有较好的互动性。课件中引入了大量的动画和图片, 将抽象、复杂的课程内容用生动的多媒体图像、动画表现出来, 使学生可以更直观地理解教学内容, 有效提高学生的专业知识和实际工程水平。教学课件使用了i Spring软件, 这是一款Power Point转Flash工具, 可以轻松地将PPT演示文档转换为对Web友好的Flash影片格式, 转换的同时将会保留原有的可视化与动画效果。Flash格式的最大特点是体积小巧、易于分发, 兼容所有的操作系统和浏览器等。题库部分分为分章习题、课程试卷、在线测试, 以便学生对学习效果进行自我评价。

实践教学模块是本网站的特色之一, 结合社会需求精选了电子秤、玻璃破碎报警器、自动水龙头等10个案例, 选题贴近学生的实际生活, 符合教学目标与需要, 富有代表性。通过项目化案例教学模式, 引导学生积极思考, 培养学生解决实际问题的能力。虚拟实验室为开设虚拟实验课程提供了全新的教学环境, 充分应用多媒体丰富直观的表达形式, 可以通过“向导”方式起到示范作用, 学生也可以在虚拟实验台上动手操作, 便于学生对实验的充分理解和掌握, 同时具有利用率高、易维护等诸多优点。此外, 实践教学模块还包括实验指导书、实验室介绍等内容。素材资源模块中包括动画资源、视频资源、拓展知识和生产厂商介绍四部分, 力求提供大量与本课程相关的课外文字、图片、音视频等资源, 供给学生课外学习。师生互动模块是一个BBS论坛, 由学习资料、疑难解答、在线讨论和灌水区四个板块组成。

2. 网站后台。

为了提高网站后期维护的便利性, 我们制作了后台管理系统, 主要包括用户管理和内容管理。用户管理即对后台管理用户进行添加、删除和编辑。内容管理即对网站中所有的文章进行修改、增加和删除。图2为管理员登陆后的网站管理系统界面。

四、该网站在教学中的应用

《传感器原理及应用》教学网站目前已经投入运行, 取得了较好的教学效果, 主要体现在以下三方面。一是实现了优秀资源的共享。网站提供了教学视频、教学课件、例题、试题、动画、拓展知识等大量的内容, 是对课堂教学内容的有效补充, 全面提升了课堂学习的效率。二是体现了“主导—主体相结合”的教育思想。网站中既有针对教师的功能完备的“授课模块”, 同时也对学生的“自主学习模块”给予了较多的关注。学生可以在课余时间进行自主学习, 有利于调动学生的积极性, 变被动学习为主动学习。教师从知识的灌输者变为学生的帮助者和学习伙伴。三是为师生提供了交流互动的平台。通过该网站教师和教师可以对教学中遇到的问题进行探讨, 学生和学生之前可以互相交流学习的心得体会, 老师可以为学生进行答疑和进行课程交流。

五、结束语

通过《传感器原理及应用》课程教学网站的设计和实现, 有效地拓展了课程的教学时空, 提高了课程的教学质量和效果, 有利于学生学习积极性的提高和综合能力的培养。

参考文献

[1]王月娥, 邱治金, 何远虑.基于测控专业特色的《传感器》网络课程建设[J].科技创新与应用, 2012, 2:243.

[2]张芳《.大学英语》精品课程教学网站建设与实现探究[J].鸡西大学学报, 2010, 10 (4) :68-70.

8.光电传感器测量设计与应用初探 篇八

关键词:光电;传感器;设计

光电传感器由于反应速度快,能实现非接触测量,而且精度高、分辨力高、可靠性好,加之半导体光敏器件具有体积小、重量轻、功耗低、便于集成等优点,因而广泛应用于军事、宇航、通信、检测与工业自动化控制等多种领域中。当前,世界上光电传感领域的发展可分为两大方向:原理性研究与应用开发。随着光电技术的日趋成熟,对光电传感器实用化的开发成为整个领域发展的热点和关键。从上述分析可知,现代信息技术的主体是光子技术与微电子技术,而光子技术与微电子技术结合,它们相互交叉、相互渗透与补充,就形成了光电信息技术,光电信息技术的主要内容是电─光信息转换和光─电信息的转换及其应用,是现代信息技术的基础和核心。

一、光电效应

光电效应一般有外光电效应、光导效应、光生伏特效应。光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大是,电子会克服束缚脱离材料表面而进入外界空间,从而改变光电子材料的导电性,这种现象成为外光电效应。根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。

二、光电元件及特性

根据光电元件制造的光电元件有光电子,充气光电管和光电倍曾管。

1、光电管。光电管的种类繁多,典型的产品有真空光电管和充气光电管。当入射光照射在阴极上时,单个光子就把它的全部能量传递给阴极材料中的一个自由电子,当电子获得的能量大于阴极材料的逸出功时,它就可以克服金属表面束缚而逸出。

2、光电电管的灵敏度低,因此人们研制了具有放大光电流能力的光电倍增管。利用逐级产生的二次电子发射,使电子数量迅速增加,这些电子最后到达阳极,形成较大的阳极电流。若倍增电极有n级,各级的倍增率为σ,则光电倍增管的倍增率可以认为是σN,因此,光电倍增管有极高的灵敏度。在输出电流小于1mA的情况下,它的光电特性在很宽的范围内具有良好的线性关系。光电倍增管的这个特点,使它多用于微光测量。

3、光敏电阻。光敏电阻的工作原理是基于内光电效应。在半导体光敏材料的两端装上电极引线,将其封在带有透明窗的管壳里就构成了光敏电阻。光敏电阻的特性和参数如下:(1)暗电阻光敏电阻置于室温、全暗条件下的稳定电阻值称为暗电阻,此时流过电阻的电流称为暗电流。(2)亮电阻光敏电阻置于室温和一定光照条件下测得稳定电阻值称为亮电阻,此时流过电阻的电流称为亮电流。

三、光电检测

光电检测术是光电信息技术的主要技术之一,它主要包括光电变换技术、光信息获取与光信息测量技术以及测量信息的光电处理技术等。如用光电方法实现各种物理量的测量,微光、弱光测量,红外测量,光扫描、光跟踪测量,激光测量,光纤测量,图象像测量等。光电检测技术将光学技术与电子技术相结合实现对各种量的测量,它具有如下特点。

1)高精度。光电测量的精度是各种测量技术中精度最高的一种。如用激光干涉法测量长度的精度可达0.05μm/m。2)高速度。光电测量以光为媒介,而光是各种物质中传播速度最快的,无疑用光学方法获取和传递信息是最快的。3)远距离、大量程。光是最便于远距的介质,尤其适用于遥控和遥测,如武器制导、光电跟踪、电视遥测等。4)非接触测量。光照到被测物体上可以认为是没有测量力的,因此也无摩擦,可以实现动态测量,是各种测量方法中效率最高的一种。5)寿命长。在理论上光波是永不磨损的,只要复现性做得好,可以永久的使用。6)具有很强的信息处理和运算能力,可将复杂信息并行处理。用光电方法还便于信息的控制和存储,易于实现自动化,易于与计算机连接,易于实现智能化。

四、设计方法

光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的,它的基本结构是首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号.光电传感器一般由光源,光学通路和光电元件三部分组成.由于被测对象复杂多样,故检测系统的结构也不尽相同。一般电子检测系统是由传感器、信号调理器和输出环节三部分组成。

传感器处于被测对象与检测系统的接口处,是一个信号变换器。它直接从被测对象中提取被测量的信息,感受其变化,并转化成便于测量的电参数。有传感器检测到的信号一般为电信号。它不能直接满足输出的要求,需要进一步的变换、处理和分析,即通过信号调理电路将其转换为标准的电信号,输出给输出环节。根据检测系统输出的目的和形式的不同,输出环节主要显示与记录装置、数据通信接口和控制装置。

传感器的信号调理电路是由传感器的类型和对输出信号的要求决定的。不同的传感器具有不同的输出信号。能量控制型传感器输出的是电参数的变化,需采用电桥电路将其转换成电压的变化,而电桥电路输出的电压信号幅度较小,共模电压又很大,需要用仪表放大器进行放大,在能量转换型传感器输出的电压、电流信号中一般都含有较大的噪声信号,需加滤波电路提取有用的信号,而滤波出无用的噪声信号。而且,一般能量型传感器输出的电压信号幅度都很低,也许才用仪表放大器进行放大。

与电子系统载波相比,光电系统载波的频率提高了几个数量级。这种频率量级上的变化使光电系统在实现方法上发生了质变,在功能上也发生了质的飞跃。主要表现在载波容量、角分辨率、距离分辨率和光谱分辨率大为提高,因此,在信道、雷达、通信、精导、导航、测量等领域获得广泛应用。

注意事项:1)硬件的逻辑错误是由于设计错误和加工过程中的工艺性错误所造成。这类错误包括错线、开路、短路,其中短路是最常见也是最难以排除的故障。单片机系统往往要求体积很小,印刷板的布线密度很高,由于工艺原因经常造成引线之间的短路。2)元器件失效的原因有两个方面:一是由于元器件本身损坏或性能差,诸如电阻,电容的型号参数不正确,集成电路损坏,或速度、功率等技术参数不合格等。二是组装错误造成元器件失效,诸如电容,二极管极性错误,集成块安装方向颠倒等。

五、结语

采用以上设计后,光电传感器减少干扰。它在严酷环境中能稳定地工作。经过电磁兼容设计,光电传感器可靠性及质量显著提高。(作者单位:沈阳师范大学物理科学与技术学院)

参考文献:

[1]江文杰,施建华.光电技术[M].科学出版社.

[2]张福学.传感器、电子学及其应用[M].国防工业出版社.

9.光电传感器原理及应用的探讨论文 篇九

填空1.5*12,简答5*5,综述12分,计算题5题45分

除了计算题外的内容:(掌握知识点)

1.2.

3.4.

5.6.

7.8.

9. 测量方法的分类 误差的分类、产生的原因及消除的方法。随机误差正态分布的四个性质及解释。传感器动态特性的性能指标及各指标含义。传感器静态特性的性能指标及各指标含义。传感器组成及各部分功能,传感器的标定 全桥、半桥、单臂测量电路的灵敏度和线性度比较。四种直线拟合的方法。各传感器分类、组成及各部分的功能、基本原理、特性计算、测量电路及应用【如应变片的分类及原理,电容传感器分类及灵敏度是否线性,比较差动变隙式自感传感器和差动变压器的异同,压电材料的分类及各自特点等】

10. 应变效应

11. 应变片的温度误差的补偿方法。

12. 横向效应

13. 电涡流效应

14. 压电效应

15. 霍尔效应,霍尔器件的三轴示意

16. 电磁感应定律

17. 零点残余电压

18. 有源和无源传感器定义

10.光电传感器原理及应用的探讨论文 篇十

1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。变换原理/规律涉及到物理、化学、生物学、材料学等学科。

2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。

3、传感器的分类

按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。

按构成原理分类:

结构型:依靠机械结构参数变化来实现变换。物性型:利用材料本身的物理性质来实现变换。

按输入量的不同分类——>温度、压力、位移、流量、速度等传感器 按变换工作原理分类: 电路参数型:电阻型、电容型、电感型传感器

按参电量如:Q(电量)、I、U、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器

4、传感器技术的发展动向:

教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器

老师表述:微型化、集成化、廉价。第二章:传感器的一般特性

1、静态特性

检测系统的四种典型静态特性

线性度:传感器的输出与输入之间的线性程度。传感器的理想输出-输入特性是线性的。

灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。

即S N=输入量的变化/输出量的变化=dy/dx

迟滞性:特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入特性曲线不重合的程度。

(产生的原因:传感器机械部分存在的不可避免的缺陷。)

重复性:重复性表示传感器在输入量按同一方向作全量程多次测量时所得特性曲线不一致程度。曲线的重复性好,误差也小。产生的原因与迟滞性类似。

精确度.测量范围和量程.零漂和温漂.2、动态特性:(传感器对激励(输入)的响应(输出)特性)

动态误差:输出信号不与输入信号具有完全相同的时间函数,它们之间的差异。包括:稳态动态误差、暂态动态误差

动态测试中的两个重要特征:时间响应、频率响应 第三章:传感器中的弹性敏感元件

1、什么叫敏感材料? 对电、光、声、力、热、磁、气体分布等待测量的微小变化而表现出性能明显改变的功能材料。

半导体材料最主要的特点是对温度、光、电、磁、各种气体及压力等外界因素具有敏感特性,是制造磁敏、热敏、光敏、力敏、离子敏等传感器件的主要材料。

2、引言:

(1)变形:物体在外力作用下,改变原来的尺寸和形状的现象。(2)刚度:弹性敏感元件在外力的作用下抵抗变形的能力(3)弹性元件:具有弹性变形特性的物体。

弹性敏感元件作用:把力、力矩或压力变换成相应的应变或位移;然后由各种转换元件,将被测力、力矩或压力转换成电量。

3、弹性敏感元件的基本特性:

(1)弹性特性:作用在弹性敏感元件上的外力与其引起的相应变形(应变、位移或转角)之间的关系。可由刚度或灵敏度来表示。

(2)刚度:弹性敏感元件在外力作用下抵抗变形的能力。dx dF x F k x = ⎪⎭⎫ ⎝⎛∆∆=→∆0lim(3)灵敏度是刚度的倒数

(4)弹性滞后:弹性元件在弹性变形范围内,弹性特性的加载曲线与卸载曲线不重合的现象。

(5)弹性后效:弹性敏感元件所加载荷改变后,不时立即完成相应的变形,而是在一定时间间隔中逐渐完成变形的现象。

(6)应力:反映物体一点处受力程度的力学量

(7)应变:用以描述一点处变形的程度的力学量是该点的应变(8)弹性模量=线性应力/线性应变

第四章:电阻应变式传感器

1、电阻应变片的种类(P63~P65)

丝式应变片:(1)回线式应变片(2)短接式应变片 箔式应变片 薄膜应变片 半导体应变片

2、应变效益:金属导体或半导体在受到外力作用时,会产生相应的应变(拉伸或压缩),其电阻也将随之发生变化。

通过弹性敏感元件转换作用,将位移、力、力矩、加速度、压力等参数转换为应变因此可以将应变片由测量应变扩展到测量上述参数,从而形成各种电阻应变式传感器。

第五章:电容式传感器

1、电容式传感器工作原理:由绝缘介质分开的两个平行金属板组成的平板电容器,当忽略边缘效应影响时,其电容量与真空介电常数、极板间介质的相对介电常数、极板的有效面积A以及两极板间的距离d 有关:

d A C r εε0=

若被测量的变化使式中d、A、三个参量中任意一个发生变化时,都会引起电容量的变化,因此可分为三种:

变间隙式、变面积式、变介电常数式。第六章:电感式传感器

(目测老师上课时没讲,之后视情况补充)第七章:压电式传感器

1、概念:压电式传感器是以具有压电效应的压电器件为核心组成的传感器,已被广泛应用于超声,通信,宇航,雷达和引爆等领域。

2、(1)正压电效应(压电效应):

在电介质的一定方向上施加机械力而产生电的极化,导致两个相对表面(极化面)上出现符号相反的束缚电荷Q,且其电位移D 与外应力张量T 成正比:

D=dT(d —压电常数矩阵 即压电系数?)

当外力消失,又恢复不带电原状;当外力消失,电荷极性随之而变。(2)逆压电效应(电致伸缩):

施加电场时,应变S 与外电场强度E 成正比:S= dE(d —逆压电常数矩阵 即压电系数?)

即能量类型转换: 电能量

教材表述:

x 轴平行于正六面体的棱线,称为电轴; y 轴垂直于正六面体的棱面,称为机械轴;

z 轴表示其纵向轴,称为光轴。

压电效应:这些物质(压电材料)在沿一定的方向受到压力或拉力作用而发生形变时,其表面上会产生电荷;若将外力去掉时他们又回到不带电的状态,这种现象就称为压电效应。在每一切片中,当沿电轴方向加作用力F 时,则在于电轴垂直的平面上产生电荷Q。

逆压电效应:在片状压电材料的两个电极面上,如果加以交流电压,那么压电片能产生机械振动,即压电片在电极方向上有伸缩的现象压电材料的这种现象称为“电致伸缩效应”,也叫“逆压电效应”。

3、相关传感器:压电式加速度传感器、压电式力传感器、压电式压力传感器、测力传感器

第八章:磁电式传感器

1、概念:磁电式传感器是利用电磁感应原理, 将输入运动速度变换成感应电势输出的传感器。有时也称作电动式或感应式传感器。根据电磁感应定律, 当N 匝线圈在均恒磁场内运动时, 设穿过线圈的磁通为Φ, 则线圈内的感应电势e 与磁通变化率d Φ/dt有如下关系:

dt d N e φ-=

2、霍尔传感器(ppt 上没有相关内容,大家自己补充)第九章:热电式传感器

1、热电偶温度计(热电偶温度计是以热电效应为基础的测温仪表)(1)组成:

热电偶(敏感元件): 必须用两种不同的材料作热电极—>1 连接热电偶和测量仪表的导线(补偿导线及铜导线)—>2

测量仪表(动圈仪表或电位差计)—(2)结构:

热电偶是由两种不同材料的导体焊接而成;导体被称为热电极。工作端或热端:焊接的一端用来感受被测介质的温度。自由端或冷端:与导线相连端。(3)热电偶的基本原理:

①热电效应:在两种不同的金属所组成的闭合回路中,当两接触处的温度不同时,回路中就要产生热电势,称为Seebeck 电势。这一物理现象称为热电效应。回路的总热电势为:

αAB —为热电势率或Seebeck 系数,其值随电极材料和两接点的温度而定。热电效应产生的电势由珀尔帖效益和汤姆逊效应引起。

②接触电势(珀尔帖电势)——>珀尔帖效应

将同温度的两种不同的金属互相接触。由于不同金属内自由电子的密度不同,在金属A 和B 的接触处会发生自由电子的扩散现象,从密度大的A 扩散到B ;使A 带正电,B 带负电;直到在接点处建立了强度充分的电场,E AB(T

③温差电势——>Thomson效应

假设在一匀质棒状导体的一端加热,则沿此棒状导体有一温度梯度。导体内的自由电子将从高温端向低温端扩散,并在温度较低一端积聚起来,使棒内建立起一电场。当该电场对电子的作用力与扩散力相平衡时,扩散作用停

止,电场产生的电势称为Thomson 电势(温差电势)

。E A(T T T o 温差电势远小于接触电势,常把它忽略掉。回路的总热电势为:((,(0 0 T E T E dT T

T E AB AB T T AB AB-= =⎰α

(4插入第三种导线的问题:在热电偶回路中接入第三种金属导线对原热电偶所产生的热电势数值并无影响。不过必须保证引入线两端的温度相同。

(5补偿导线的选用:(工作端与冷端离得很近,而且冷端又暴露在空间,受周围环境温度的影响,冷端温度难以恒定。可以采用一种专用导线,将热电偶的冷端延伸出来,这种专用导线称为“补偿导线”。不同的热电偶所用的补偿导线也不同。

(6热电偶的温度补偿方法(教材上表述方法有些许不同,大家自己补充吧~)①0℃恒温法:在标准大气压下,将清洁的水和冰鞋混合后放在保温容器内,可使T 0保持0℃

②补正系数修正法:设冷端温度为t n,此时测得温度为t 1,其实际温度应为t= t1+kt n(k :补正系数)③延伸电极法:原理为连接导体定律

④补偿电桥法:利用不平衡电桥产生的电压来补偿热电偶参考端温度变化引起的电势变化

(7)热电偶的使用误差

①分度误差:热电偶的分度是指将热电偶置于给定温度下测定其热电势,以确定热电势与温度的对应关系。

方法有标准分度表分度和单独分度两种。

②仪表误差δ=(T max-T min)K(式中T max、T min :仪表量程上,下限;K :仪表的精度等级。)③延伸导线误差:一种是由延伸导线的热特性与配用的热电偶不一致引起的;另一种是由延伸导线与热电偶参考端的两点温度不一致引起的。这种误差应尽量避免。

④动态误差

产生原因:由于测温元件的质量和热惯性,用接触法测量快速变化的温度时,会产生一定的滞后,即指示的温度值始终跟不上被测介质温度的变化值,两者之间会产生一定的差值。

修正方法:在热电偶测量系统中引入与热电偶传递函数倒数近似的RC 或RL 网络

⑤漏电误差

产生原因:随温度升高(特别是在高温时)时,绝缘效果明显变坏,是热电势输出分流。

(8)热电偶的基本定律(P158):

①均质导体定律:两种均质金属组成的热电偶,其电势大小与热电极的直径、长度及沿热电极长度上的温度分布无关,只与热电极材料和两端温度有关。

②中间导体定律:在热电偶回路中插入第三、四„种导体,只要插入导体的两端温度相同,切插入导体是均质的,则无论插入导体的温度分布如何,都不会影响原来热电偶的热电势的大小。

③中间温度定律:热电偶在接点温度为T,T 0时的热电势等于该热电势在接点温度为T,T n 和T n,T 0时相应的热电势的代数和,即:E AB(T,T0=EAB(T,Tn +EAB(Tn ,T 0(9热电偶对热电极的材料的基本要求任意两种导体或半导体都能配成热电偶,当两个接点温度不同时就能产生热电势,但作为实用的测温元件,不是所有的材料都适于制作热电偶。基本要求是:

①热电特性稳定,即热电势与温度的对应关系不会变动 ②热电势要足够大,易于测量热电势,且课得到较高的准确度 ③热电势与温度为单值关系,最好成线性关系,或者是简单的函数关系 ④电阻温度系数和电阻率要小,否则热电偶的电阻讲随热端温度而有较大的变化,影响测量结果的准确性⑤物理成分稳定,化学成分均匀,不易氧化和腐蚀

⑥材料的复制性好

⑦材料的机械强度要高

2、两种热电式传感器的转换关系: 热电阻传感器(将温度变化转化为电阻变化)热电偶传感器(将温度变化转化为热电势变化)

3、热电阻传感器 电阻式测温系统是利用热电阻和热敏电阻的电阻率温度系数而制成温度传感器的。大多数金属导体和半导体的 电阻率都随温度发生变化,都称为热电阻。纯金属有整的温度系数,半导体有负的温度系数。(1)热电阻材料的特点: ①高温度系数,高电阻率 ②化学和物理性能稳定 ③良好的输出特性 ④良好的工艺性(2)热敏电阻的特点 ①负温度系数热敏电阻 a:电阻温度系数大,灵敏度高,约为热电阻的十倍。b:结构简单,体积小,可测量点温度。c:电阻率高,热惯性小,适宜动态测量。d:易于维护和进行远距离控制。e:制造简单,使用寿命长。②正温度系数热敏电阻 ③临界温度系数热敏电阻 第十章:光电式传感器

1、分类(光电式传感器是能将光能转换为电能的一种器件,简称光电器件。它的物理基础是光电效应): 光电管 光电倍增管 光敏电阻 光敏二极管和光敏晶体管 光电池 光电式传感器的应用 光电耦合器件(补 测量非电量时:非电量的变化转化为光量 的变化,通过光电器件的作用,将光量的变化转换为电量的变化

2、光电式传感器利用的效应:光电效应,分为:外光电效应、内光电效应、阻挡层光电效应(光生伏打效应)(1)外光电效应:在光线作用下使物体的电子逸出表面的现象称为外光电效应。例如:光电管、光电倍增管(2)内光电效应:在光线作用下能使物体电阻值改变的现象称为内光电效应。例如:光敏电阻(3)在光线作用下能使物体产生一定方向的电动势的现象,称为阻挡层光电效应(光生伏打效应)。例如:光电 池、光敏晶体管等

3、光电管(充气光电管:玻璃泡内充少量惰性气体,提高光电管灵敏度,但稳定性、频率特性等较差)6 原理:当阴极受到适当波长的光线照射时便发射电子,电子被带正电位的阳极所吸引,这 样在光电管内就产生了电子流,在外电路中便产生了电流。

4、光电倍增管 它由光电阴极 K、若干倍增极 E1~E4 和阳极 A 三部分组成。光电阴极是由半导体光电材料制造的,入射光就 在它上面打出光电子。倍增极数目在 4—14 个不等。在各倍增极上加上一定的电压。阳极收集电子,外电路形成电 流输出。

5、光敏电阻(没有极性,纯粹是一个电阻器件)当无光照时,光敏电阻值(暗电阻很大,电路中电流很小,此时的电流称为暗电流。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻急剧减少,电路中电流迅速增加此时的电流称为亮 电流。光电流与暗电流之差,称为光电流。

6、光敏二极管和光敏晶体管(1)接法及原理:光敏二极管在电路处于反向偏置,在没有光照射,反向电阻很大,反向电流很小,这反向电流 称为暗电流。当光照射在 pn 结上,通过 Pn 结的反向电流也随着增加。如果入射光照度变化,通过外电路的光电流 强度也随之变动,可见光敏二极管能将光信号转换为电信号输出。(2)光敏晶体管与一般晶体管很相似,具有 2 个 pn 结。它在把光信号转换为电信号同时又将信号电流加以放大。又将信号电流加以放大。

7、光电池 7(1)工作原理:当光照到 pn 结上时,如果光子能量足够大,n 区和 p 区之间就出现电位差。用导线将 pn 结两端用 导线连接起来.电路中就有路流流过,电流的方向由 p 区流经外电路至 n 区。若将电路断开,就可以测出光生电动 势。(2)光电池对不同波长的光,灵敏度是不同的 第十一章:智能式传感器(这个好像也

没上。。)第十二章:光导纤维传感器

1、光纤传感器的工作原理 光纤波导原理:光纤波导简称光纤,它是用光透射率高的电介质(如石英、玻璃、塑料等构成的光通路。它由 折射率 n1 较大(光密介质的纤芯和折射率 n2 较小(光疏介质的包层构成的双层同心圆柱结构。n0 : 光纤周围媒质的折射率 n1:纤芯的折射率 n2:包层的折射率  : 光线纤端入射角 :光线纤内入射角 :光线与轴线的夹角 a : 纤芯半径 在光纤内传输的条件:

2、光纤的分类:    0( 0:光线在纤芯 包层分界面的临界角。 纤芯直径 2a  2 ~ 12μm   单模光纤 纤皮折射率差   1 2  0.01 ~ 0.02   n1    纤芯折射率均匀  阶跃折射率光纤   纤芯与包层界面折射率 发生突变 按纤芯折射率分布  纤芯折射率不均匀  梯度折射率光纤 纤芯折射率按一定函数 关系沿光纤径向变化  

3、光调制与解调技术 所谓“调制”,是将被研究对象的信号(信息)通过载体传输出去。因此,光的调制过程就是将一携带信息的 信号叠加到载波光波上;完成这一过程的器件叫做调制器。

4、概念:纤传感器是通过被测量对光纤内传输光进行调制,使传输光的强度(振幅、相位、频率或偏振等特性发生 变化,再通过对被调制过的光信号进行检测,从而得出相应被测量的传感器。

5、光纤的特性(1)损耗:吸收损耗、散射损耗,物质的吸收作用将使传输的光能变成热能,造成光功能的损失。损耗的单位:dB/km(2)色散:所谓光纤的色散就是输入脉冲在光纤传输过程中,由于光波的群速度不同而出现的脉冲展宽现象 可分为:材料色散、波导色散(结构色散)、多模色散 8

6、光强度的外调制 光纤本身只起传光作用。这里光纤分为两部分:发送光纤和接收光纤。两种常用的调制器是反射器和遮光屏。反射式强度调制器:

7、信息容量用所能调制的频带宽度表示。载波信号的频率越高,获得的频带宽度越大信息传送容量越大。第十三章、第十四章可能不考。。第十五章:湿度传感器

1、湿度测量技术发展已有 200 多年的历史

2、绝对湿度表示单位体积空气里所含水汽的质量:ρ =Mv/V(Mv:被测空气中水汽质量;V:被测空气体积)相对湿度是气体的绝对湿度(ρ v与在同一温度下,水蒸汽已达到饱和的气体的绝对湿度(ρ w之

11.光电传感器原理及应用的探讨论文 篇十一

关键词:应用光学,激光位移传感器,应用研究,展望

激光器作为一种新型光源, 与普通光源有显著的不同。它利用受激发射原理和激光腔的滤波效应, 使所发光波具有一系列新的特点。激光检测技术是最先进、应用最广泛的检测技术之一。可实现高精度、高效率、非接触在线检测。在科学研究、工业生产、空间技术、国防等领域得到了广泛应用, 是一种非常先进的测量技术。基于三角测量法的激光位移传感器近年来得到了快速发展, 在零件的尺寸测量, 三维轮廓测量, 产品质量检测等领域极大地提高了测量效率和精度[1,2,3]。利用激光位移传感器对零件进行非接触式测量是光学精密测量领域的重要研究内容, 对激光位移传感器的测量原理和应用研究作简要阐述。

1 激光位移传感器的测量原理

激光位移传感器采用激光三角法测量原理测量系统发出的激光束经过聚焦后照射到被测物体表面, 经漫反射后光线由成像透镜成像到光敏元件接受面上, 通过光电转换器转换为电信号, 电信号的输出大小仅与被测点的位置有关, 当测点高度发生变化, 像点位置随之改变, 引起传感器输出信号发生变化。该传感器可与快速的反馈跟踪系统配合使用, 能够准确快速地测出表面的形状与轮廓。它克服了接触式检测中的诸多缺点, 既提高了检测速度, 又保护了被测工件表面免受划伤及防止测量头变形。

图1为激光位移传感器的原理, 用一束激光以某一角度聚焦在被测物体表面, 然后从另一角度对物体表面上的激光光斑进行成像, 物体表面激光照射点的位置不同, 所接受散射或反射光线的角度也不同, 用CCD或PSD (位敏探测器) 测出光斑像的位置, 即可计算出物体表面激光照射点的位置。当物体沿激光线方向发生移动时, 测量结果则将发生改变, 从而实现用激光测量物体的位移。

2 激光位移传感器的应用研究进展

高精度激光位移传感器基本的应用有诸如对偏移、间隙、厚度、弯曲、变形、尺寸、公差测量及生产过程质量控制和尺寸检验等[1,2,3]。但随着计算机技术的发展, 学者们已经研究的另一些更复杂的形貌测量技术, 利用激光位移传感器测量工件上点的二维坐标, 从而实现物体形状的高精度测量。通过一维电位移平台带动激光位移传感器扫描物体的表面, 然后对测量的数据进行处理, 进而得到物体的表面形貌。根据被测物体表面情况以及所要求的测量精度, 可以选择不同参数的激光位移传感器实现测量[4,5]。

由于激光三角位移传感器属于非接触测量, 因此对被测材料无特殊要求, 既可测金属材料, 也可测

孙渝平等在对充分应用激光、计算机等先进技术于公路路面平整度和车辙快速、连续、自动检测的原理、方法和实现技术开展了深入系统研究的基础之上, 根据路面检测的实际需要, 集成路面平整度和车辙两项重要指标的检测功能, 研究开发了多功能激光路面检测系统, 用于高等级公路路面平整度和路面车辙的快速、自动检测。

计算机在测量中的应用, 使得激光位移传感器在动态扫描测量方面也有长足的发展。文献[9]介绍了基于激光位移传感器与电涡流位移传感器的位移差动法在线检测纸坯厚度的原理及测量系统的软硬件设计, 该测量原理完全消除了造纸机卷纸滚筒的径向跳动对测量结果的影响, 通过对各个传感器标定, 并采用最小二乘法线性拟合标定数据, 进一步提高系统的测量精度。万真真等人采用双激光器实时深度测量系统对锌合金标准样品进行了溅射深度的实时测量, 给出了实时深度测量曲线。通过将溅射面测量曲线与参考面曲线进行叠加, 得到了样品溅射坑深度的实际值[10]。文献[11]分析了数控机床误差源和各误差项目的归类, 在此基础上使用Renishaw激光干涉仪和高精度位移传感器实现了机床线性定位误差和主轴热误差的测量和数据分析。

3 展望

激光位移传感器主要应用在高灵敏度、高精度的位移、角度、同轴度的非接触测量与校准领域。随着工业生产的发展, 激光位移传感器将向着高速度、高精度、多功能、多参数、小尺寸的方向发展。它将在机器视觉、自动加工、工业在线检测、产品质量控制、实物仿形、生物医学等领域具有重要的意义和广阔的应用前景。

参考文献

[1]孙军利, 赵辉, 陶卫.具有亚像素级定位精度的激光三角测距新算法[J].激光, 2006, 27 (3) :22-23.

[2]赵辉, 张海波, 陶卫.激光三角位移传感器分辨率不均匀性分析与参数优化[J].红外与激光工程, 2008, 37 (4) :37-38.

[3]庄葆华, 张吉华, 叶声华.激光三角测距法及其在汽车工业中的应用[J].汽车技术, 1993 (11) :28-30.

[4]朱万彬.激光位移传感器在物体表面形状测量中的应用[J].光机电信息, 2010, 27 (10) :70-72.

[5]R Okai, C Tanaka, T Ohtani, et al.Application of a noveltechnique for band sawing using a tip-inserted saw re-garding surface profiles[J].Holz als Roh-und Werkst-off.2005, 63 (4) :256-265.

[6]Jakub Sandak, Chiaki Tanaka.Evaluation of surface smoo-thness by laser displacement sensor 1:effect of woodspecies[J], Journal of Wood Science, 2003, 49 (4) :305-311.

[7]Jakub Sandak, Chiaki Tanaka and Tadashi Ohtani.Evalua-tion of surface smoothness by a laser displacement sen-sor II:comparison of lateral effect photodiode and mul-tielement array[J].Journal of Wood Science, 2004, 50 (1) :22-27.

[8]Yongjun Lai, Evgueni V.Bordatchev, Suwas K.Nikumb.Metallic micro displacement capacitive sensor fabricatedby laser micromachining technology[J].MicrosystemTechnologies, 2005, 12 (8) :778-785.

[9]张习加.激光位移传感器在纸坯厚度在线检测中的应用[J].传感器与微系统, 2006, 25 (11) :77-78.

[10]万真真, 李小佳, 王永清, 等.一种用于辉光放电光谱深度分析的激光实时测量新方法[J].光谱学与光谱分析, 2011, 31 (9) :2536-2541.

上一篇:领导在2021年全市大气污染防治重点工作推进会上的发言下一篇:给前女友的道歉信感人

相关推荐