机械系统设计知识点总结

2024-08-11

机械系统设计知识点总结(共8篇)

1.机械系统设计知识点总结 篇一

1螺纹联接的防松的原因和措施是什么? 答:原因——是螺纹联接在冲击,振动和变载的作用下,预紧力可能在某一瞬间消失,联接有可能松脱,高温的螺纹联接,由于温度变形差异等原因,也可能发生松脱现象,因此在设计时必须考虑防松。措施——利用附加摩擦力防松,如用槽型螺母和开口销,止动垫片等,其他方法防松,如冲点法防松,粘合法防松。2.提高螺栓联接强度的措施

答:(1)降低螺栓总拉伸载荷Fa的变化范围:a,为了减小螺栓刚度,可减螺栓光杆部分直径或采用空心螺杆,也可增加螺杆长度,b,被联接件本身的刚度较大,但被链接间的接合面因需要密封而采用软垫片时将降低其刚度,采用金属薄垫片或采用O形密封圈作为密封元件,则仍可保持被连接件原来的刚度值。(2)改善螺纹牙间的载荷分布,(3)减小应力集中,(4)避免或减小附加应力。3.轮齿的失效形式

答:(1)轮齿折断,一般发生在齿根部分,因为轮齿受力时齿根弯曲应力最大,而且有应力集中,可分为过载折断和疲劳折断。(2)齿面点蚀,(3)齿面胶合(4)齿面磨损(5)齿面塑性变形。4.齿轮传动的润滑。

答:开式齿轮传动通常采用人工定期加油润滑,可采用润滑油或润滑脂,一般闭式齿轮传动的润滑方式根据齿轮的圆周速度V的大小而定,当V<=12时多采用油池润滑,当V>12时,不宜采用油池润滑,这是因为(1)圆周速度过高,齿轮上的油大多被甩出去而达不到啮合区,(2)搅由过于激烈使油的温升增高,降低润滑性能,(3)会搅起箱底沉淀的杂质,加速齿轮的磨损,常采用喷油润滑。

5.为什么蜗杆传动要进行热平衡计算及冷却措施

答: 由于蜗杆传动效率低,发热量大,若不及时散热,会引起箱体内油温升高,润滑失效,导致齿轮磨损加剧,甚至出现胶合,因此对连续工作的闭式蜗杆传动要进行热平衡计算。措施——1),增加散热面积,合理设计箱体结构,铸出或焊上散热片,2)提高表面传热系数,在蜗杆轴上装置风扇,或在箱体油池内装设蛇形冷却水管。6.带传动的有缺点。

答,优点——1)适用于中心距较大的传动,2)带具有良好的挠性,可缓和冲击,吸收振动,3)过载时带与带轮间产生打滑,可防止损坏其他零件,4)结构简单,成本低廉。缺点——1)传动的外廓尺寸较大,2)需要张紧装置,3)由于带的滑动,不能保证固定不变的传动比,4)带的寿命短,5)传动效率较低。与带传动和齿轮传动相比,链传动的优缺点

答: 与带传动相比,链传动没有弹性滑动和打滑,能保持准确的平均传动比,需要的张紧力小,作用在轴上的压力也小,可减小轴承的摩擦损失,结构紧凑,能在温度较高,有油污等恶劣环境条件下工作。与齿轮传动相比,链传动的制造和安装精度要求较低,中心距较大时其传动结构简单。链传动的缺点——瞬时链速和瞬时传动比不是常数,传动平稳性较差,工作中有一定的冲击和噪声。

9.轴的作用,转轴,传动轴以及心轴的区别。

答: 轴是用来支持旋转的机械零件。转轴既传动转矩又承受弯矩。传动轴只传递转矩而不承受弯矩或弯矩很小。心轴则只承受弯矩而部传动转矩。10.轴的结构设计主要要求。

答: 1),轴应便于加工,轴上零件要易于装拆。2),轴和轴上零件要有准确的加工位置,3)各零件要牢固而可靠的相对固定,4)改善受力状况,减小应力集中。11. 形成动压油膜的必要条件。

答: 1)两工作面间必须有楔形形间隙,2)两工作面间必须连续充满润滑油或其他粘性流体,3)两工作面间必须有相对滑动速度,其运动方向必须使润滑油从大截面流进,小截面流出,此外,对于一定的载荷,必须使速度,粘度及间隙等匹配恰当。

13.变应力下,零件疲劳断裂具有的特征。

答: 1)疲劳断裂的最大应力远比静应力下材料的强度极限低,甚至屈服极限低,2)不管脆性材料或塑像材料,疲劳断裂口均表现为无明显塑性变形的脆性突然断裂,3)疲劳断裂是损伤的积累。

14.机械磨损的主要类型——磨粒磨损,粘着磨损,疲劳磨损,腐蚀磨损。

15. 垫圈的作用——增加被联接件的支撑面积以减小接触处的压强和避免拧紧螺母时擦伤被联接件的表面。16.滚动螺旋的优缺点。

答: 优点——1)磨损很小,还可以用调整方法消除间隙并产生一定预变形来增加刚度,因此其传动精度很高,2)不具有自锁性,可以变直线运动为旋转运动。缺点——1)结构复杂,制造困难,2)有些机构中为了防止逆转而需另加自锁机构。齿轮传动的功率损耗包括——啮合中的摩擦损耗,搅动润滑油的油阻损耗,轴承中的摩擦损耗。

20.轴瓦材料的性能——1)摩擦系数小,2)导热性好,热膨胀系数小,3)耐磨,耐蚀,抗胶合能力强,4)要有足够的机械强度和可塑性。

21提高螺纹连接强度的措施

a降低影响螺栓疲劳强度的应力幅b改善螺纹牙上载荷分布不均的现象c减小应力集中的影响d采用合理的制造工艺方法 22提高轴的强度的常用措施

a合理布置轴上零件以减小轴的载荷b改进轴上零件的结构以减小轴的载荷c改进轴的结构已减小轴的载荷d改进轴的表面质量以提高轴的疲劳强度

3滚动轴承正常的失效形式是内外圈滚道或滚动体上的点蚀破坏

46308—内径为40mm的深沟球轴承尺寸系列03,0级公差,0组游隙

7211c—内径为55mm的角接触球轴承,尺寸系列02,接触角15°,0级公差,0组游隙

N408p5—内径为40mm的外圈无挡边圆柱滚子轴承,尺寸系列04,5级公差,0组游隙

5为了把润滑油导入整个摩擦面间,轴瓦或轴颈上开油孔或油槽 轴承材料性能应着重满足以下主要要求 a良好的减摩性,耐磨性和抗咬粘性b良好的摩擦顺应性,嵌入性和磨合性c足够的强度和抗腐蚀能力d良好的导热性,工艺性和经济性等

7轴承材料分三大类:a金属材料b多孔质金属材料c非金属材料

8滑动轴承的失效形式

a摩力磨损b刮伤c咬粘d疲劳剥落e腐蚀

9模数越大,齿轮的弯曲疲劳强度越高 小齿轮直径越大,齿轮的齿面接触疲劳强度越高

43.带轮的结构形式:轮缘,轮辐,轮毂组成

九:V带轮的轮槽 与选用的V带的型号相对应 V带绕在带轮上以后发生弯曲变形,使V带工作面的夹角发生变化,为了使V带的工作面与带轮的轮槽工作面紧密贴合,将V带轮轮槽的工作面的夹角做成小于40°

V带安装到轮槽中以后,一般不应超出带轮外圆,也不应与轮槽底部接触,为此规定轮槽基准直径到带轮外圆和底部的最小高度hamin和hfmin 2.摩擦分为干摩擦,边界摩擦,流体摩擦,混合摩擦 3.磨损:运动副之间的摩擦导致零件表面材料丧失或者迁移 分为三阶段:磨合阶段,稳定磨损阶段,剧烈磨损阶段

设计和使用机器时:力求缩短磨合期,延长稳定磨损期,推迟剧烈磨损期的到来

磨损按磨损机理分类:粘附磨损,磨粒磨损,疲劳磨损,冲蚀磨损,腐蚀磨损,微动磨损

4.润滑剂的作用:降低摩擦,减轻磨损,保护零件不遭锈蚀,散热降温,缓冲吸振,密封能力

分为四个类型:气体,液体,半固体,固体

性能指标:1粘度(动力粘度:流体中任意点处的切应力均与该处流体的速度梯度成正比

运动粘度:动力粘度与同温度下的液体的密度之比值)2润滑性3极压性4闪点:遇火焰能发出闪光的最低温度5凝点:不能再自由流动的最高温度6氧化稳定性 二:螺纹:外螺纹和内螺纹,共同组成螺旋副 常用螺纹:连接螺纹及传动螺纹连接螺纹1)普通螺纹2)非螺纹密封的管螺纹3)用螺纹密封的管螺纹4)米制螺纹 传动螺纹1)矩形螺纹2)梯形螺纹3)锯齿形螺纹

螺纹连接的仿松实质 防止螺旋副在受载时发生相对转动。措施按工作原理分为摩擦防松,机械防松,破坏螺旋副运动关系防松 摩擦防松机械防松破坏螺旋副运动关系防松

螺纹连接的预紧:预紧力目的在于: 增强连接的可靠性和紧密性,以防止受载后被连接件间出现隙缝或者相对滑移

五:键

键连接的主要类型:平键连接,半圆键连接,楔键连接和切向键连接

根据用途不同平键可分为:普通平键,薄型平键(静连接),导向平键和滑键(动连接)按构造分:圆头(A型),平头(B型),单圆头(C型)

六:平键连接失效形式:工作面被压溃 对于导向平键或者滑键连接失效形式工作面的过度磨损

七:带传动是一种挠性传动,基本组成零件为带轮和传动带

按工作原理不同分为:摩擦型(又按横截面面积形状不同分为平带传动,圆带传动,V带传动,多楔带传动)和啮合型带传动

V带传动材料:包括顶胶,抗拉体,底胶和包布 链传动的缺点:只能实现平行轴间链轮的同向传动,运转时不能保持恒定的瞬时传动比,磨损后易发生跳齿,工作时有噪声,不宜用在载荷变化很大,高速,急速反向的传动中。十:链传动的失效形式①链的疲劳破坏 成为决定链传动承载能力的主要因素②链条铰链的磨损 结果使得链节距增大,链条总长度增加,从而使链的松边垂度发生变化,同时增大了运动的不均匀性和动荷载,引起跳齿。③链条铰链的胶合 一定程度上限制了链传动的极限转速

十一:齿轮传动

主要特点:①效率高②结构紧凑③工作可靠寿命长④传动比稳定

十五:滑动轴承 分为整体式径向滑动轴承,对开式径向滑动轴承(承受径向力),止推滑动轴承(承受轴向力)① 滑动轴承的失效形式 磨粒磨损,刮伤,咬粘(胶合),疲劳剥落,腐蚀

② 轴承材料

材料应该满足的要求 ⑴良好的减摩性,耐磨性和抗咬粘性⑵良好的摩擦顺应性,嵌入性和磨合性⑶足够的强度和抗腐蚀能力⑷良好的导热性,工艺性,经济性等

③常用的轴承材料⑴轴承合金(通称巴氏合金或白合金)⑵铜合金⑶铝基轴承合金⑷灰铸铁及耐磨铸铁⑸多孔质金属材料⑹非金属材料

④油孔及油槽 作用:为了将润滑油导入整个摩擦面间,轴瓦或轴颈上需开设油孔或油槽,对于液体动压径向轴承,有轴向油槽和周向油槽两种形式

⑤润滑油及其选择

润滑油是滑动轴承中应用最广的润滑剂,液体动压轴承通常采用润滑油作润滑剂

原则上讲当转速高,压力小,应选择粘度较低的油,反之当转速高压力大应选粘度较高的油

润滑油粘度随温度升高而降低,故在较高温度下工作的轴承所用油粘度应该比通常的高一些。

215.滚动轴承的实效形式正常实效是:内外圈滚道或滚动体上的点蚀破坏

1普通平键截面尺寸按 轴的直径来选择,键长按 轮毂的长度而定

2随着表面粗糙度的增加,零件的实际接触面积

减少,高副元件表面接产生的应力是切应力

3螺纹连接防松的实质是防止螺旋副间的相对转动 4内联板与套筒,外联板与销轴过盈 滚子和套筒,套筒和销轴间隙

5对齿轮材料性能的基本要求齿面硬 齿芯韧

6带传动的传动比不宜过大,过大则

包角减小 出现打滑,减小有效拉力

7承载能力最高是直齿圆柱传动,最低是斜齿

8限制蜗杆的直径系数q是为了限制齿数 蜗杆传动的滑动速度越大,所选润滑油的粘度值就越小

9液体摩擦动压滑动的轴瓦上的油孔,油沟位置应开在中部周向

11在承受横向载荷或者旋转力矩的普通紧螺栓连接中,螺杆受扭转切应力和拉应力

12蜗杆传动中 蜗杆头数越少效率越低自锁性越好常用头数1246 1.由于零件尺寸及几何形状变化,加工质量及强化因素等影响,使得零件的疲劳极限要小于材料的疲劳极限。r=c时,o与m的连线;σm=c时,90度;σmin=c时,45度。、简述不同齿轮传动的主要失效形式及其设计计算准则 答:闭式软齿面齿轮传动主要失效形式为齿面点蚀,先按齿面接触疲劳强度设计,然后进行齿根弯曲疲劳强度校核;闭式硬齿面齿轮传动,主要失效形式是弯曲疲劳折断,先按齿根弯曲疲劳强度设计,然后进行齿面接触疲劳强度校核;闭式高速重载齿轮传动,主要失效形式是胶合,除满足齿面接触强度和齿根弯曲强度外,还应按抗胶合能力进行计算;开式齿轮传动主要失效形式是磨损,只要按弯曲疲劳强度设计,并用增大模数方法来考虑磨损的影响;短期过载或冲击时,主要失效形式是过载折断或齿面塑形变形,按静强度计算。

1.液体动压轴承与静压轴承在形式压力油膜的机理上有什么不同

答:液体动压轴承利用轴颈与轴承表面间形成收敛油楔,依靠两表面间一定的相对滑动速度使一定黏度的润滑油充满楔形空间,形成流体压力与轴承载荷平衡,以得到液体润滑。

液体静压轴承是利用油泵将具有一定压力的液体送入支承处,使摩擦表面间强迫形成一层液态膜将表面完全分开,并能承受一定的载荷。

2.某一普通V带传动装置工作时有两种输入转速:300r/min和600r/min,若传递的功率不变,试转速设计?为什么?

答:由于输出的功率P=Fv不变,所以需要带传动提供的有效拉力F1和F2也不相等。V带传动应按大的有效效应拉力进行设计,即按低速时的参数设计带传动。因为按低俗运行参数设计,带传动能提供的有效拉力较大,可以满足高速时对有效拉力的要求。但若按高速运行参数设计,带传动提供的有效拉力较小,不能满足低速时较大的拉力要求,运行时,可能会因有效拉力不足而打滑,还会因带中应力超过许用应力而使带的寿命下降。

3.滚动轴承的基本额定寿命与基本额定动载荷

答:基本额定寿命:一组在相同条件下运转的近于相同的轴承,将其可靠度为90%时的寿命作为标准寿命。即按一组轴承中10%的轴承发生点蚀破坏,而90%的轴承不发生点蚀破坏前的转数或工作小时数作为轴承的寿命,并把这各寿命叫做基本额定寿命。

基本额定动载荷:使轴承的基本额定寿命恰好为106r时,轴承所能承受的载荷。

4.带传动的弹性滑动与打滑?两者有何区别?

答:传动带在受到拉力作用时会发生弹性变形。在小带轮上,带的拉力从紧边拉力F1逐渐降低到松边拉力F2,带的弹性变形量逐渐减少,因此带相对于小带轮向后退缩,使得带的速度低于小带轮的线速度v1;在大带轮上,带的拉力从松边拉力F2逐渐上升为紧边拉力F1,带的弹性变形量逐渐增加,带相对于大带轮向前伸长,使得带的速度高于大带轮的线速度v2.这种带的弹性变形而引起的带与带轮间的微量滑动,称为带传动的弹性滑动。在带传动的速度不变的条件下,随着带传动所传递的功率逐渐增加,带和带轮间的总摩擦力也随之增加,弹性滑动所发生的弧度的长度也相应扩大。当总摩擦力增加到临界值时,弹性滑动的区域也就扩大到了整个接触弧。此时,如果增加带传动的功率,则带与带轮间就会发生显著的相对滑动,即整体打滑。

(建议理解后,用自己的话答)

5.用同一材料制成的机械零件和标准试件的疲劳极限

通常是不相同的,试说明导致不相同的主要原因 答:主要因素:应力集中、零件尺寸大小、零件表面品质及环境状况

6.链传动的多边效应? 答:链传动的瞬时传动比为i1R2cosR。链传动21cos的传动比变化与链条绕在链轮上的多边形特征有关,故将以上现象称为链传动的多边形效应。

7.带传动为什么要限制其最小中心距和最大传动比? 答:中心距过小,单位时间内链条的绕转次数增多,链条曲伸次数和应力循环次数增多,因而加剧了链的磨损和疲劳。同时,由于中心距小,链条在小链轮上的包角变小,每个轮齿所受的载荷增大,且易出现跳齿和脱齿现象。传动比过大链条在小链轮上的包角就会过小,参与啮合的齿数减少,每个轮齿承受的载荷增大,加速轮齿的磨损,且易出现跳齿和脱链现象。

8.闭式蜗杆传动为什么要进行热平衡计算?可采用哪

些措施来改善条件?

答:蜗杆传动由于效率低,所以工作时发热量大。在闭式传动中,如果产生的热量不能及时散逸,将因油温不断升高而使润滑油稀释,从而增大摩擦损失,甚至发生胶合。所以,必须根据单位时间内的发热量Φ1等于同时间内的散热量Φ2的条件进行热平衡计算,以保证油温稳定地处于规定的范围内。

措施:加散热片以增大散热面积、在蜗杆轴端加装风扇以加速空气的流通。

9.带传动、链传动和齿轮传动各有什么优缺点? 带传动:(优)结构简单、传动平稳、价格低廉和缓冲吸振等特点; 链传动:(优)主要用在要去工作可靠,两轴相距较远,低速重载,工作环境恶劣,以及其他不宜采用齿轮传动的场合(缺)只能实现平行轴间链轮的同向传动;运转是不能保证恒定的瞬时传动比;磨损后易发生跳齿;工作时有噪声;不宜用在载荷变化很大、高速和急速反向的传动中。齿轮传动:(优)效率高、结构紧凑、工作可靠、传动比稳定(缺)齿轮的制造及安装精度要求高,价格较贵,且不宜用于传动距离过大的场合。10.齿轮传动设计时,为什么小齿轮的齿面硬度和齿宽要比大齿轮大一些?

答:当小齿轮与大齿轮的齿面具有较大的硬度差(如小齿轮面为淬火并磨制,大齿轮齿面为常化或调质),且速度又较高时,较硬的小齿轮面对较软的大齿轮齿面会起较显著的冷作硬化效应,从而提高了大齿轮齿面的疲劳极限,因此,当配对的两齿轮齿面具有较大的硬度差时,大齿轮的接触疲劳许用应力可提高约20%,但应注意硬度高的齿面,粗糙度值也要相应的减小。圆柱齿宽的实用齿宽,在按b=Φdd1计算后再做适当调整,而且常将小齿轮的齿宽在圆整值的基础上人为地加宽5~10mm,以防止大小齿轮因装配误差产生轴向错位时导致啮合齿宽减小额增大轮齿单位齿宽的工作载荷。11.普通平键主要失效形式是什么? 答:工作面被压溃

12.用受力变形图说明受轴向工作载荷F的普通紧螺栓联接其螺栓的总载荷F2,预紧力F0,被联接件的残余预紧力F1与工作载荷F之间的关系。(螺栓刚度为Ch,被联接件刚度为Cm)答:见P83 图5-25(c)13.当设计链传动时,选择齿数Z1和节距P应考虑哪些问题?

答:对于z1而言。

小链轮齿数z1少,将减小外廓尺寸,但齿数过少,会增加运动的不均匀性和动载荷;链条在进入和退出啮合时,链节间的相对转角增大;链传动的圆周力增大,从整体上加速铰链和链轮的磨损。可见,小链轮的齿数z1不宜过少。链轮的最少齿数Zmin=9。一般z1≧17,对于高速传动或承受冲击载荷的链传动,z1不少于25,且链轮齿应淬硬。

小链轮的齿数z1也不宜取太大。在传动比给定时,z1大,大链轮齿数z2也相应增大,其结果不仅增大了传动的总体尺寸,而且还容易发生跳链和脱链,从另一方面限制了链条的使用寿命。

对于P而言

节距p越大,承载能力就越高,但总体尺寸增大,多边形效应显著,振动、冲击和噪声也严重。为

使结构紧凑和延长寿命,应尽量选取较小的节距的单排链。速度高,功率大时,宜选用小节距的多排链。如果从经济上考虑,当中心距小、传动比大时,应选小节距的多排链,中心距大,传动比小时,应选大节距的单排链。14.设计齿轮时,在什么情况下必须将齿轮与轴设计成一

体,做成齿轮轴

答:对于直径很小的钢制齿轮,当为圆柱齿轮时,若齿根圆到键槽底部的距离e<2mt(mt为端面模数);当为锥齿轮是,按齿轮小端尺寸计算而得的e<1.6mt时,均应将齿轮和轴做成一体,叫做齿轮轴。

15.在某段轴颈采用两个平键时一般将键槽沿周向相隔

180º布置,采用楔键时却相隔90º~120º布置,这是为什么?

考虑键的合理布置,详见P108(建议理解后,用自己的话答)

16.为什么开式齿轮传动一般不会出现点蚀现象

答:开式齿轮润滑条件恶劣,齿间会进入磨料性物质,在齿轮出现点蚀现象前,齿面就被磨损报废。17.带传动中,为什么带速不易过高或过低?

答:当带传动的功率一定时,提高带速,可以降低带传动的有效拉力,相应地减少带的根数或者V带的横截面积,总体上减少带传动的尺寸;但是,提高带速,也提高了V带的离心应力,增加了单位时间内带的循环次数,不利于提高带传动的疲劳强度和寿命。降低带速则有相反的利弊。

18.形成稳定动压油膜的必要条件(流体动力润滑的必要

条件)答:(1)相对滑动的两表面间必须形成收敛的楔形间隙;(2)被油膜分开的两表面必须有足够的相对滑动速度(亦即表面滑动表面带油时要有足够的油层最大速度),其运动方向必须使润滑油由大口流进,从小口流出。(3)润滑油必须有一定的黏度,供油要充分。

19.简述螺纹联接的基本类型主要有哪四种?

螺栓联接、螺钉联接、双头螺柱联接、紧定螺钉联接。20.提高螺栓联接强度的措施有哪些? 降低螺栓总拉伸载荷的变化范围;改善螺纹牙间的载荷分布;减小应力集中; 避免或减小附加应力

21.闭式蜗杆传动的功率损耗主要包括哪三部分? 闭式蜗杆传动的功率损耗包括三部分:轮齿啮合的功率损耗,轴承中摩擦损耗和搅动箱体内润滑油的油阻损耗。22.链传动的主要失效形式有哪些?

链板疲劳破坏;滚子套筒的冲击疲劳破坏;销轴与套筒的胶合;链条铰链磨损;过载拉断。23.滚动轴承的基本类型有哪些? 调心球轴承、调心滚子轴承、圆锥滚子轴承、推力球轴承、深沟球轴承、角接触球轴承、推力圆柱滚子轴承、圆柱滚子轴承、滚针轴承等。

2.机械系统设计知识点总结 篇二

机械产品的装配规划是机械产品生产的重要组成部分。据有关统计, 在产品的生产过程中, 大约1/3左右的人力及产品生产制造总工时的40%-60%被用于产品的装配过程, 装配成本占总生产成本的50%左右, 因此提高装配规划的效率和品质成为了装配规划的研究重点[1]。

传统的装配规划忽视了对以往成熟产品装配规划经验的借鉴, 同时, 装配规划过程中需要确定紧固连接件的工具、检测装配精度的量具以及一些标准的装配操作规范, 这些工作需要查阅机械设计手册或是行业规范, 但查阅过程繁琐、时间耗费大, 而且易出现人为错误。近年来, 由于人工智能的发展, 人们越来越重视对经验知识的应用, 知识这一概念也被引入到了装配规划的研究中, H.K.Tonshoff[2]等提出了一种基于知识的自动装配序列规划方法、X.F.Zha[3]等建立了一个集成的基于知识的装配序列规划和评价系统。KAPSS、Jiannan Zhou[4]等开发了装配规划的原型系统, 其基于知识的装配规划系统主要以基于产品装配特征[4]的规则类知识为依据并结合算法进行装配规划, 体现了规划的智能性和高效性, 但由于规则类知识少且不易表达, 导致规划方案往往不能满足现实要求, 缺少实际的装配生产指导意义。本文将提出面向装配规划的机械产品装配工艺知识管理系统, 该系统主要对面向装配规划的装配工艺知识进行收集、表达和存储, 形成了装配实例知识库、装配资源使用知识库和基本装配工艺知识库。通过知识库的积累并结合人的逻辑推理能力, 可以为装配规划提供更全面、更有效的指导。

1 面向装配规划的装配工艺知识

装配规划的主要工作包括产品装配单元划分、产品装配工序确定和产品装配资源选择三部分内容, 完成这三方面装配规划工作所需的知识构成了面向装配规划的装配工艺知识的组成部分。装配单元确定知识是对产品进行套件、组件和部件等装配单元确定, 选择装配单元基准件, 从而进行分层分级装配的知识;装配工序确定知识是确定零部件装配顺序、确定工序内容、制定装配操作规范的知识;装配资源分配知识是确定各工序所需的工具和量具的知识。由于装配工序中很多装配操作是标准的, 普遍适用的, 因此将标准的装配操作知识单独提出, 构成基本工艺知识, 为装配操作规范的制定提供辅助。

1.1 装配单元确定知识

装配单元[6]是由多个零件或部件通过配合、连接等关系组成的一个不可自发分离的子结构, 而且这个子结构不影响原装配体中其余零件的装配。配合关系是装配特征之间的配合方式, 如平面配合、柱面配合和锥面配合等, 而装配特征[5]是零件表面上参与装配活动的区域, 主要由形状特征、材料特征、运动关系和位置关系组成。连接关系是用于定位和传递零件之间的几何约束的结构。若干相同类型的连接件同其所连接的普通零件以及相应的附件所组成的集合称为一个连接组件。

通过以上分析得出装配单元主要取决于装配基准、配合关系和连接方法三方面。

1.2 装配工序确定知识

装配工艺过程[7]是装配人员按照产品的装配顺序, 通过一定的装配操作, 按照指定的装配路径并在保证装配精度要求的情况下高效率、高品质的完成产品装配的过程。装配顺序是装配工序中各零部件进行装配的次序, 是产品装配的重要依据。如果装配顺序选取不恰当, 将致使装配操作不断重复, 造成装配一次成功率降低并极大的浪费装配资源, 延长产品的开发周期, 直接导致成本的增加。装配操作是指将零部件组合在一起而进行的清洗、定位、连接、调整、修配、检验等操作。

装配工序划分是将装配工艺过程划分为若干个阶段, 以保证装配生产的平衡, 提高生产效率。

由上可见, 装配工序确定主要取决于装配顺序、装配操作、装配夹具、装配路径四个方面。

1.3 装配资源使用知识

机械产品装配规划中使用的装配资源主要由工具、夹具和量具组成。工具的选择主要根据螺纹紧固件的类型及其公称直径和装配现场拥有的工具资源确定。量具的选择主要根据装配精度要求及装配现场拥有的量具资源确定。由于机械产品的装配过程中使用的夹具基本上因产品不同而不同, 很少能重用, 因此本文中将夹具认定为与具体产品零部件相关的属性, 而不将其包括在装配资源中。

1.4 基本装配工艺知识

基本装配工艺知识是指一些标准操作规范, 这些操作规范不会因为产品的不同而发生变化, 而只与具体的装配操作相关。这些装配操作规范包括清洗、防松和胶接。

清洗是为保证装配品质及装配工作的顺利进行, 对待装配的零部件进行的操作。对于不同的零部件材料采取不同的清洗方法即选择不同的清洗参数。

螺纹连接在冲击、振动和变载荷作用下可能自松, 因此要根据具体的产品使用环境及现场条件选择合适的防松方式。

胶接是工艺简便, 不需要复杂的工艺设备的连接操作, 但是合适的胶接剂组分、固化压力、固化时间、固化温度的选择对胶接品质至关重要。

2 基于本体的装配工艺知识表达

知识表达的方法多种多样, 使用较多的知识表示方法[8]主要有:谓词逻辑表示法, 产生式表示法、框架表示法、语义网络表示法、面向对象表示法、基于本体的知识表示法等。本体作为构建描述领域知识模型的方法论[9], 它对领域内的概念模型进行了明确说明, 而且可以支持粒度小、语义复杂的概念模型创建, 这些特点正适合表达有不同细节需求的装配工艺知识。基于本体的表示方法对知识表示语言中的建构和约束作普遍的、无歧义的语义解释, 可以保证支持本体的不同使用者之间进行语义层面的信息共享和互操作, 同时, 作为本体描述语言的OWL[10]可以方便的映射到数据库, 为本体的存储提供了方便。因此本文将采用基于本体的知识表达方法来构建装配工艺知识。

基于本体概念的装配工艺知识构成图如图1所示, 由装配单元、装配工序、装配资源和基本装配工艺四个本体组成, 每个本体又划分为若干粒度不同的下级本体。

a) 装配单元知识本体

使用零件和连接组件这两种最基本组成单元来描述其构成, 任何装配单元都是通过连接组件将零件连接起来形成不可自发分离的装配结构, 装配单元的特征由零件的特征形成, 零件的形状特征和材料特征是零件独立的特征, 它只与零件本身有关, 而零件的运动关系、位置关系和装配精度是零件之间的特征, 它由多个零件共同决定。零件特征构成了装配单元的结构特点, 也是装配工序规划的出发点。

b) 装配工序知识本体

由装配顺序、装配操作、装配路径描述, 装配顺序确定装配单元中零件或连接组件的装配秩序, 装配操作决定将两个零件装配在一起进行的各种操作如先定位再连接, 装配路径确定装配操作的方向。对于装配工序中所需使用的装配资源将单独在装配工装中进行描述。

c) 装配资源知识本体

装配资源知识本体由装配工具和装配量具组成, 装配工具是紧固连接件时需要使用的资源, 装配量具是保证零件装配精度时使用的资源。

d) 基本装配工艺知识本体

基本装配工艺知识本体是标准操作规范的描述, 对于某类型机械产品的装配, 主要考虑防松、清洗、胶接三类常用基本工艺。防松工艺主要用于螺纹连接件, 即在有螺纹连接件而且有防松要求时就需要相应的防松操作规范。清洗工艺主要用于零件或连接组件装配前操作, 具体清洗工艺的选择要取决于零件类型和污染物的种类及污染程度。胶接基本工艺的选择要根据被连接件材料、连接要求及环境决定。

3 装配工艺知识管理系统实现

3.1 系统架构

本文建立的装配工艺知识管理系统体系架构如图2所示。装配工艺知识管理系统主要对装配实例知识、装配资源使用知识和基本装配工艺知识进行管理, 建立了面向装配规划的装配工艺知识库, 以提供给用户进行知识重用, 其中装配实例知识由装配单元确定知识和装配工序确定知识描述。以面向装配规划的装配工艺知识库为基础, 该系统提供了装配实例检索、装配资源检索、基本装配工艺检索和装配工艺知识录入界面, 实现了用户对相应知识的管理。装配实例知识的管理将产品的装配过程进行管理, 以供工艺规划人员规划相似产品时进行查询、学习和借鉴, 提高装配规划效率;装配资源使用知识的管理将螺纹连接件或装配精度对应的装配资源进行管理, 便于工艺规划人员快速查询, 得到符合实际的需要使用的装配资源。基本装配工艺知识管理对防松、清洗、胶接工艺知识进行管理, 为工艺规划人员提供标准的装配操作规范。

3.2 面向装配规划的装配工艺知识应用

以台钻Z4006-A主轴箱部件装配工艺规划为例说明装配工艺知识管理系统的应用。对于主轴箱部件, 装配工艺知识管理系统的辅助规划主要分为三个层次, 一是辅助装配工序确定;二是确定需要使用何种装配资源;三是确定标准操作规范。

在规划台钻Z4006-A主轴箱部件装配过程前先学习以往相似产品装配过程, 可以通过装配实例知识检索得到如下相似装配实例, 通过学习借鉴来辅助Z4006-A装配工序确定, 如图3 (a) 。台钻Z4006-A主轴箱部件中采用了M5×25的开槽沉头螺钉连接刻度板和主轴箱, 因此需要确定紧固该螺栓的工具, 可以通过装配工具检索辅助确定装配工具资源使用, 如图3 (b) 。主轴箱部件中垫块的装配有平行度为0.1 mm的精度要求, 因此要确定测量其装配精度要求的量具, 可以通过装配检索辅助确定装配量具资源使用, 如图3 (c) 。由于主要轴箱部件使用过程中存在振动, 因此需要对起连接作用的开槽沉头螺钉进行防松, 通过防松工艺检索确定合适的防松标准操作规范, 如图3 (d) 。

通过利用系统提供的装配工艺知识, 并结合三维装配过程规划软件, 最终实现台钻Z4006A从装配工序规划到装配资源使用再到基本装配工艺应用的辅助规划, 形成装配技术要求等文字信息和三维装配过程动画为一体的装配工艺文件, 图4所示为主轴箱部件的装配工艺指导界面。

4 结论

装配工艺知识在装配规划过程中具有重要的作用, 需要进行规范的管理以使这些知识得到重用。基于本体概念构建了装配工艺知识体系, 形成了包含装配单元、装配工序、装配资源和基本装配工艺等知识为主体的装配工艺知识库, 开发了面向装配规划需求的装配工艺知识管理系统。结合台钻Z4006A的装配规划为例, 说明了装配工艺知识管理系统中各主要知识模块的使用, 为快速形成装配工艺指导文件提供有力支撑。将来的工作需要对装配工艺知识库进行扩充, 形成更多的知识容量;另外, 如何在三维装配规划中实现知识的主动推动, 更好的为三维装配提供知识服务也是一个研究方向。

摘要:分析了机械产品装配规划所需知识, 利用本体方法建立了装配工艺知识本体。并构建装配工艺知识, 建立了面向装配规划的装配工艺知识库。以知识库为基础并结合用户界面, 建立了面向装配规划的机械产品装配工艺知识管理系统, 通过应用实例说明并验证了系统的工作过程及其有效性。该知识管理系统可为快速形成装配工艺指导文件提供技术支撑。

关键词:机械产品,装配规划,工艺,本体,知识库,管理系统

参考文献

[1]姜华, 周济, 张新访, 等.基于配合特征的机械装配自动化规划[J].计算机集成制造系统, 1996, 9 (3) .

[2]TONSHOFF H K, MENZEL E, PARK H S.A Knowledge-Based System for Automated Assembly Planning[J].CIRP AnnalsManufacturing Technology, 1992, 41 (1) :1-2.

[3]ZHA X F, LIM S Y E, FORK S C, Integrated Knowledge-based assembly sequence planning[J].The International Journal of Advanced Manufacturing Technology, 1998, 1 (14) :1.

[4]ZHOU Jiannan, An integration of time measurement method and ergonomic knowledge into the generation of assembly planning[D], University of Utah, 2001.

[5]郑轶, 宁汝新, 王恒, 等.基于装配特征本体表达的虚拟产品建模研究[J].计算机集成制造系统, 2006, 12 (12) .

[6]薛鹏, 李原, 彭培林.基于实例的飞机装配单元划分技术研究[J].中国机械工程, 2007, 18 (19) .

[7]张开富, 李原, 邵毅, 等.一种集成装配过程信息的装配建模方法[J].西北工业大学学报, 2005, 32 (2) .

[8]张科杰, 袁国华, 彭颖红.知识表示及其在机械工程设计中的应用探讨[J].机械设计, 2004, 21 (06) .

[9]唐富年, 唐荣年.HEBELER John, FISHER Matthew, BLACE Ryan et al.Web3.0与Semantic Web编程 (2010年6月第1版) [M].北京:清华大学出版社, 2010.6:115-148.

3.机械系统设计知识点总结 篇三

摘要:随着我国经济发展水平的不断提高,各项工业化生产取得了非常显著的成绩,这离不开各种机械设备的使用与开发,而机械设计需要各种设计软件的支持,其中,CAD技术就是较为常用的一种方法。但是,在使用CAD设计过程中,鉴于软件自身构造、功能等的复杂性,会存在一些问题,但是随着技术的发展,CAD将成为机械设计最为科学的技术。本文主要基于知识工程对机械标准设计方法进行了分析,从而表现机械标准件设计技术的日趋成熟过程。

关键词:知识工程;机械标准设计;设计软件;机械制造

在机械标准件设计与制造的早期就已经应用了CAD技术,但只局限在几何绘图当中,其功能应用较为单一。但是机械零部件之间往往缺少必要的连接强度,对某一个零部件进行修补就代表着要对整个系统进行重新设计开发,最终导致零件的开发效率非常低,使用也非常不方便。而随着CAD技术的发展与广泛应用,并且具有参数化的功能,能够通过几何约束来对模型的大小、特征进行控制,使变量成为可以调整的数值。只需要对相关联的公式进行调整就可以达到不同的参数与尺寸,实现零部件的调整或者是修改。这样能够降低资源的消耗,还可以提高调整的效率。但是参数设计同样在构建函数关系上存在不足,为此,将知识工程引入能够补充设计上的不足,并且知识是可以循环利用的。

一、知识工程在CAD软件中应用

知识工程最为直观的理解就是利用人工智能对信息、数据进行处理,再运用信息网络技术对数据进行计算,可以完成数据的采集、加工、整理、制作、发送等工作。在知识工程中,可以首先运用知识对题目进行解答,在解答当中能够对过去的知识进行回顾,加深对现有知识的了解,在这种循环模式下能够顺利将问题解决。

知识工程对问题解决的同时也是对参数设计不足的补充。首先,能够先将产品的关联性构建出来,产品的特征以及尺寸可以在设计当中获得修整,在构建出来关联性以后,产品所具有的关联性信息将非常多,并且在信息显示上也能够更加清晰、具体。还有一方面,在知识工程的设计背景下,能够将信息校对、设计标准引入进来,实现了变量之间的统一约束,甚至可以构建出一个独立的校对验收信息库。在设计出的产品不能达到设计规范时能够及时发出错误警报,这样能够将修理的时间缩短,增加了参数设计时的稳定性与安全性。

二、基于知识工程的参数化CAD设计框架

(一)框架设计

在知识工程领域下,其参数化的产品设计框架为下图1所示:

图1 基于NX/KF的产品设计框架

(二)Knowledge Fusion模块

作为一种科学化的高端软件,CAD技术的核心力量体现在产品的开发与设计上,而在知识工程理念下,NX软件系统的核心技术是知识工程,这样能够让知识工程中专业人员有更宽广的空间去选择优化的设计方案,从而创造出比平时更多的收益。为此,在知识工程理念的引导下,NX/Konwledge Fusion模块被开发了出来。

该技术模块的优点体现在以下几个方面:

1、在知识工程领域下,可以应用导学方程式语言,这种语言具有自身特点,用户学习起来非常方便,还很容易理解;

2、可以为用户提供各种物理量化的函数式,比如,常见的有惯性引力、重心引力等;

3、用户在使用函数对话框,对其的构建相比其他模块更容易构建出来,并且方式较为简单;

4、可以将外部的各种资料全部转化为构建模型的资料;

5、对参数拉杆的动态模型进行控制;

6、可以对模型的最优比例进行设计与构建。

Knowledge Fusion在开发过程中能够将其以集成方式融入到NX的数字化系统中,这种Knowledge Fusion技术有较为明显的优势,为此,可以在上面构建出多个应用形式的软件,能够将非常繁多的技术、知识综合运用起来,再通过知识的运用与表述对产品的设计进行研究。

三、运用零部件族法以及Konwledge Fusion模块进行标准化的设计

(一)零部件族法的设计承重梁

运用知识工程进行模块的标准化设计首先就要基于零部件族法构建出一个零部件模块,再构建出了模块以后,再按照零部件的各项参数构建出特定的表达式,可以将参数中的各种变量添加到电子表格中,通过电子表格对各项参数进行计算。用户在使用各项标准化的零部件时,只需要将零部件尺寸、以及外形变量全部输入到对话框中,就能够得出对应的零部件模型。零部件的族法是运用CAD参数化的思想在设计中应用。在零部件的承重梁设计对话框中,设计样式如下图2所示:

图2 基于零部件族的承重梁设计框架

(二)Knowledge Fusion模块设计承重梁

Knowledge Fusion一般都应用的是对象编程方法,并且NX/Open API是一种开发工具,能够对系统进行二次开发与设计。在应用Konwledge Fusion模块进行设计时,必須要能够遵循下面一些原则:首先,要按照设计标准设立一个中心;其次,要能够使设计过程中的特征数进行减少;最后,要选取适合的零部件之间的尺寸,并对这些零部件的尺寸构建出特定的关系。在Knowledge Fusion模块设计当中,承重梁的设计框架样式如下图3所示:

图3 基于Knowledge Fusion模块设计承重梁设计框架

(三)标准化设计的比较

4.机械系统设计课程总结 篇四

《机械系统设计》结课综合设计(论文)

专业班级 机械设计制造及其自动化 08-4 姓 名 123456789 学 号 08041406 开课系室 机电工程学院 机电工程系 结课日期 2011年 11月30日

机械系统设计课程总结

总体概述:本门课程名叫机械系统设计,不同于我们以前所学的机械设计。上学期我们所学的机械设计是以机械零件为研究对象进行具体的设计;而在本门课程中的研究对象是整个机械系统,包括原动机、传动系统、执行系统、控制系统以及辅助系统,进行的是整机设计。

下面就根据本课程所学的内容,对机械系统设计过程做一个较为详细的介绍:

一:方案设计

在接到一个设计任务后,首先要明确设计任务是什么,并对其进行功能方面的分析,针对要实现的功能设计出合理的方案,大体步骤如下:

1、设计任务抽象化——一般用黑箱原理来表示。

2、确定工艺原理——设法确定黑箱所要求的能实现作业对象转化的工艺原理。

3、确定技术过程——按照选定的工艺原理确定转化所需的程序及其顺序。

4、引进技术系统并确定系统边界——根据技术过程的要求确定机械系统的具体任务,并把这些任务分配给各个子系统。

5、确定功能结构——进行功能分解。

6、确定设计方案——分以下三步:寻找实现分功能的方法和载体;构建形态学矩阵;确定基本结构布局。二:总体设计

1、初步总体设计——根据设计方案绘制总体布置草图,进行初步计算和运动分析,并进行初步技术经济分析。注意改进薄弱环节,必要时应对方案中的关键技术系统进行试验研究。

2总体设计——对初步总体设计做进一步完善,形成技术文件和图纸。1)设计任务书、技术任务书;2)机构运动简图和系统简图;3)总装配图及关键部件装配图;4)电、光、气、液控制图;5)总体设计报告书及技术说明书。

在此过程中,主要涉及步骤有:执行系统的布置、传动系统的设置、操纵件的布置、总体主要参数的确定等。

三:原动机的选择

动力机的选取的依据是工作载荷的类型,常用的原动机主要类型有:电动机、液压马达、气压马达、以及内燃机。

电动机作动力有以下优点:驱动效率高,与工作机连接简便,种类和型号较多,可以满足不同类型机械的工作要求。此外,电动机还具有良好的调速性能,起动、制动、反向和调速的控制简单,可实现远距离测量和控制,便于集中管理和实现生产过程自动化。其不足之处就是要用电源,这对野外工作的机械及移动式机械如钻机来讲,使用受到限制,因为可能有时无电源。

液压马达作动力机时有以下优点:可以获得很大的机械力或转矩。与电动机相比,功率/重量比大,因而运动件惯性相对小,快速响应灵敏度高。液马达还可以通过改变流量来调节执行机构的速度,改变运动速度方便,易实现无级调速。其局限性为:要有高压油供给系统,液压元件加工、装配要求高,易漏油并影响工作效率和工作机械的运动精度。

气动马达作动力机时有以下优点:与液压马达相比,工作介质为空气,易获得、无污染。维护简单,成本低,对易燃、易爆、多尘和振动环境适应性好。其不足之处在于:由于空气可压缩,因而气动马达工作稳定性差,噪音大,输出扭矩不大,只适用于小型和轻型机械。

内燃机作动力时有以下优点:自持能力高(只要备足燃料和油料,可独立工作),功率范围宽。其缺点是:对燃料(柴油或汽油)的要求高,内燃机排气污染。噪音都较大,而且结构复杂,对零部件的加工精度要求较高。不能带负载启动。

在进行机械系统设计时,如何选择动力机的类型,主要从以下三个方向考虑:

1、工作机的负载特性和要求:包括工作机的载荷特性、工作制度、结构布置和工作环境等。

2、动力机本身的机械特性:包括动力机的功率、转矩、转速等特性,以及对工作环境的适应性,要使动力机的机械特性和工作机械的负载特性相匹配。

3、进行经济性比较:包括能源的供应和消耗,动力机的制造、运行和维修成本的对比等。

除上面所说的三个方面外,有些动力机的选择还要考虑对环境的污染,包括空气污染和噪声污染等。例如,室内工作的机械就尽量不要用内燃机作动力机。四:传动系统设计

传动系统的作用是联接动力机与工作机,即把动力机的运动和动力传给执行机构或执行构件。在实际应用中,常用的传动系统有:带传动、链传动、齿轮传动、液力传动、气力传动。

传动系统通常包括以下几个组成部分:变速装置,起停和换向装置,制动装置及安全保护装置。

变速装置是传动系统中最重要的组成部分,它的作用是改变动力机的输出转速和转矩,以满足执行机构的要求;常见的变速装置有以下几种:变速齿轮变速机构、滑移齿轮变速机构、离合器变速机构、啮合器变速机构。

起停和换向装置的作用是控制执行机构的起动、停车以及改变运动方向,那么对起停和换向装置的基本要求是:起停和换向方便省力,操作安全可靠,结构简单,能传递足够的动力。

常用的起停和换向装置有两类:一类是通过按钮或操纵杆直接控制电动机实现起停和换向,另一类是用离合器实现起停和换向。选择方案时应考虑执行机构所要求的起停和换向的频繁程度、动力机的类型与功率大小。

制动装置:动构件具有惯性,所以制动停车时不能立即停止,而是逐渐减速后才能停止运动。为节省停车时间,对于起停频繁或运动构件惯性大、速度高的系统,要设置制动装置。制动装置还可用于机械一旦发生事故时紧急停车,或使运动构件可靠地停在某个位置上。机械系统对制动装置的基本要求是:工作可靠、操纵方便、制动平稳、时间短,结构简单、尺寸小、磨损小、散热良好。

常用的制动器有摩擦式或非摩擦式两大类:带式制动器、外抱块式制动器、张蹄式制动器、磁粉制动器 安全保护装置:

有些机械在工作过程中载荷经常变化,并且变化幅度较大,因此可能过载,如这时本身无保护装置的话,应在传动链中设置安全保护装置,以免传动机构破坏。本身具有保护作用的传动链有带传动、摩擦离合器等,而传动链中的安全保护装置常见的有安全离合器或安全销等。当传动链所传递的转矩超过规定值时,安全保护装置中联接件会折断、分离或打滑来停止或限制转矩的传递。常用的有如下几种:

销钉安全联轴器、钢珠安全离合器、摩擦式安全离合器等。另外,从系统的变速形式(是否连续)来看,变速部分可分为有级变速传动和无级变速传动:

有级变速传动系统常有变速齿轮传动、链传动或变速带传动组成。在一定的变速范围内,其输出轴只能得到有限级数的转速。在有级变速传动中最基本的变速装置是二轴变速运动,即在两根轴之间用一个变速组进行传动,二轴变速传动可实现二至四级变速。若要求的变速级数多于四级时,可以采用两个或两个以上变速组串联而成的多轴传动装置。无级变速传动系统:

主要用于下列场合:

(1)要求转速在工作中连续变化;(2)探求机械的最佳工作状态;(3)带负载启动的机械要求在低速启动;

(4)需要协调机械系统中几个执行机构之间的运转速度。无级变速的类型主要有:电力的(直流变速、交流变速)、流体的(液力的耦合器、变矩器、液压变速)和机械的(利用摩擦传动机构实现)。五:执行系统的选择

执行系统是用来完成机器预定功能的组成部分。一部机器可以只有一个执行部分,也可以有多个执行部分。

常见的可用于执行系统的机构有:连杆机构、凸轮机构、棘轮机构、槽轮机构等,在选用时要根据预定功能的运动形式选择合理的机构来完成预定的运动。六:控制系统的构建

机械系统在工作过程中,各执行机构应根据生产要求,以一定的顺序和规律运动,而各执行机构的开始、结束及其顺序一般由控制系统保证。

机械控制系统的主要任务有:

1)使各执行机构按一定的顺序和规律运动。2)改变各运动构件的运动方向和速度大小。3)使各运动构件间有协调的动作,完成给定的作业环节要求。4)对产品进行检测、分类以及防止事故,对工作中出现的不正常现象及时报警并消除。控制系统的要求: 1)稳定性要求

系统的稳定性是系统的固有特性,系统稳定与否取决于系统本身的结构与参数,与输入无关。若控制系统在任何足够小的初始偏差作用下,其响应过程随着时间的推移逐渐衰减为0,则称该系统具有渐近稳定性。反之,在初始条件影响下,若控制系统的响应过程随时间的推移而发散,输入无法控制输出,则这样的系统为不稳定系统。任何一个系统能进行正常工作的首要条件是系统必须是稳定的。2)响应特性要求

系统的响应特性包括动态特性和稳态特性。

① 动态特性:过渡过程中系统的动态性能常用系统的阻尼特性和响应速度来表征。

② 稳态特性:闭环控制系统的稳态性能用稳态误差表示和度量,它是当t时,即过渡过程结束时,系统的实际输出y(t)与参考输入所调整的期望值yr(t)之间的差值。控制系统的组成:

无论多么复杂的控制系统,都是由一些基本环节或元件组成的。

1)给定环节:给出与反馈信号同样形式和因次的控制信号,以确定被控对象“目标值”的环节。给定环节给出的信号可以是电量、非电量,也可以是数字量或模拟量。

2)测量环节:用于测量被控变量,并将被控变量转变为便于传送的另一物理量(一般为电量)的环节,常用的有电位计可将机械转角→电压信号,测速发电机将转速电压信号,光栅测量装置将直线位移→数字信号。

3)比较环节:比较环节是将输入信号X(s)与测量环节发出的有关被控变量Y(s)的反馈信号B(s)进行比较的环节。

4)校正及放大环节:通常偏差信号很小,为了实现控制,要将偏差信号作必要的校正,然后进行功率放大以便推动执行环节,常用的放大类型有电流放大,电气—液压放大等。

5)执行环节:执行环节用来接收放大信号的控制信号,驱动被控对象按照预期规律运动的环节。执行环节一般是能将外部能量传递给被控对象的有源功率放大装置,工作中要进行能量转换,如把电能通过电机转换成机械能,驱动被控对象作机械运动。七:其他辅助系统的配备

1、操纵系统:是把人和机械联系起来,使机械按照人的指令工作的机构和元件所构成的总体。操纵系统的作用和要求

操纵系统的作用是完成信号转换,也就是把人施加于机械的信号,经过转换传递到执行系统,以实现机械的起动、停止、转向、变速、变力及制动等目的。

操纵系统虽然不直接参与机械做功,对机械的精度、强度、刚度和寿命没有直接影响,但机械系统性能的好坏,功能完成情况及操作者工作强度等,都与操纵系统有直接的关系。因此,对操纵系统的设计有下列主要要求:

1)操纵轻便省力。尽可能地减小操纵力,这样不但可以减轻操作者的劳动强度,符合人机工学的要求,以提高劳动生产力;同时还可提高操纵系统灵敏度,达到对机械系统的灵活操纵。

2)操纵行程适当。操纵的行程应尽量在保证人体不动的情况下,上、下肢能舒适达到的范围。

3)操纵件定位可靠。操纵件应能长时间可靠地保持在某一操作状态的位置,不能因其它操纵力的作用而改变其操作状态。

4)操纵系统的反馈准确迅速。操纵系统应具有良好的反馈性,使操纵信号准确迅速地反馈给操作者,以便操作者及时判断操作的效果,并作出新的操纵决策。

5)操纵系统应具有可调性。操纵系统应能进行必要的调节,以保证系统的元件磨损后,经过调节仍能达到操纵的效果。

6)操纵方便和舒适。为达到这一要求,不仅要求操纵力和操纵行程的大小舒适,而且操纵件的形状、尺寸、布置位置、运动方向和各操纵件的标记、操纵顺序等都要符合人体状况和动作习惯。

7)操纵安全可靠。操纵系统应保证实现预定的操作功能,防止错误的操纵或操纵失效。

2、机械基础的设计

机械工作时的全部载荷都由它下面的地层承受。受机械载荷影响的那一部分地层称为地基,机械向地基传递载荷的中间结构体即为基础。机械基础应满足下列基本要求

1)强度方面的要求:避免在载荷作用下产生破坏和开裂; 2)刚度方面的要求:避免在载荷作用下产生过大的变形或倾斜; 3)振动方面的要求:避免过大的振动,以免影响机械本身的正常工作及邻近机械、设备等的正常使用;

4)经济性要求:机械基础在满足上述要求的情况下,应有良好的经济性。

机械基础设计的一般规定:

1)基础设计时应取得机械基础的基本资料;

2)机械基础宜与建筑物的基础、上部结构以及混凝土地面分开; 3)当管道与机械连接而产生较大振动时,管道与建筑物连接处应采取隔振措施;

4)当基础的振动对邻近的人员、精密设备、仪器仪表、工厂生产及建筑物产生有害影响时,应采取隔振措施; 5)基础不得产生有害的不均匀沉降;

6)重要的或对沉降有严格要求的机械,应在其基础上设置永久的沉降观测点,并应在设计图中注明要求。在基础施工、机械安装及运行过程中定期观测沉降情况,并作记录。

5.机械加工工艺基础知识点总结 篇五

一、机械零件的精度

1.了解极限与配合的术语、定义和相关标准。理解配合制、公差等级及配合种类。掌握极限尺寸、偏差、公差的简单计算和配合性质的判断。

1.1基本术语:尺寸、基本尺寸、实际尺寸、极限尺寸、尺寸偏差、上偏差、下偏差、(尺寸)公差、标准公差及等级(20个公差等级,IT01精度最高;IT18最低)、公差带位置(基本偏差,了解孔、轴各28个基本偏差代号)。1.2配合制:

(1)基孔制、基轴制;配合制选用;会区分孔、轴基本偏差代号。(2)了解配合制的选用方法。

(3)配合类型:间隙、过渡、过盈配合

(4)会根据给定的孔、轴配合制或尺寸公差带,判断配合类型。1.3公差与配合的标注(1)零件尺寸标注(2)配合尺寸标注

2.了解形状、位置公差、表面粗糙度的基本概念。理解形位公差及公差带。2.1几何公差概念:

1)形状公差:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。

2)位置公差:位置度、同心度、同轴度。作用:控制形状、位置、方向误差。3)方向公差:平行度、垂直度、倾斜度、线轮廓度、面轮廓度。4)跳动公差:圆跳动、全跳动。2.2几何公差带: 1)几何公差带 2)几何公差形状 3)识读

3.正确选择和熟练使用常用通用量具(如钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺等)及专用量具(如螺纹规、平面样板等),并能对零件进行准确测量。3.1常用量具:

(1)种类:钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺。(2)识读:刻度,示值大小判断。

(3)调整与使用及注意事项:校对零点,测量力控制。3.2专用量具:

(1)种类:螺纹规、平面角度样板。(2)调整与使用及注意事项 3.3量具的保养

(1)使用前擦拭干净

(2)精密量具不能量毛坯或运动着的工伯(3)用力适度,不测高温工件(4)摆放,不能当工具使用(5)干量具清理

(6)量具使用后,擦洗干净涂清洁防锈油并放入专用的量具盒内。

二、金属材料及热处理 1.理解强度、塑性、硬度的概念。

2.了解工程用金属材料的分类,能正确识读常用金属材料的牌号。2.1金属材料分类及牌号的识读: 2.1.1黑色金属:

(1)定义:通常把以铁及以铁碳为主的合金(钢铁)称为黑色金属。

(2)铸铁:灰铸铁HT抗拉强度(σb)200(MPa)、可锻铸铁KT(H黑心、Z珠光体)抗拉强度(σb)300-伸长率06、球墨铸铁QT抗拉强度(σb)400-伸长率18。(3)碳钢:

按含碳量分:低、中、高碳钢。

按质量分:普通、优质、高级优质。按用途分:

普通:Q235A:一般工程用,屈服强度Q数值235等级A。

优质碳素结构钢:45钢:机械零件用,中碳钢,含碳量0.45%);

碳素工具钢:T12:工具钢,用于刃具、量具、模具用钢,含碳量1.2%。铸造碳钢:铸钢ZG屈服强度不低于270-抗拉强度不低于500。(4)合金钢: 按用途分:

合金结构钢:40Cr:合金结构钢,含碳量0.40%,合金含量小于1.5%不标。合金工具钢:9SiCr:合金工具钢,含碳量0.9%,Si、Cr含量小于1.5%;

高速钢(锋钢)W18Cr4V:含碳量0.7-0.8%,钨含量18%,Cr含量4%,V含量小于1.5%。2.1.2有色金属

(1)有色的定义:除黑色金属以外的金属材料,统称为有色金属。(2)了解铝及铝合金。(2)了解铜及铜合金。

3、了解退火、正火、淬火、回火、调质、时效处理的目的、方法及应用。重点放在应用上。

(1)退火:消除铸件、焊接件、冷作件毛坯的应力。(2)时效处理:长时间退火,消除毛坯的应力。

(3)正火:消除锻件毛坯的锻造应力。调整硬度,便于加工。

(4)调质:淬火 回火,综合机械性能。一般安排在粗加工后、精加工前。(5)回火:消除淬火应力。温度越高,钢的强度、硬度下降,而塑性、韧性提高。

4.了解金属表面处理的一般方法。(1)表面淬火

(2)(表层)化学处理:电镀

6.高中物理机械运动知识点总结 篇六

①长度的国际单位是米,符号m。

②其它常见的长度单位及符号:

千米km、分米dm、厘米cm、毫米mm、微米μm、纳米nm

3.长度的测量

①刻度尺是常用的测量工具。

②正确使用刻度尺

会认:认清刻度尺的单位、零刻度线的位置、量程、分度值。

会选:在实际的测量中,并不是分度值越小越好,测量时应先根据实际情况

确定需要达到的程度,再选择满足测量要求的刻度尺。

会放:零刻度线或某一数值刻度线对齐待测物的起始端,使刻度尺有刻度的边贴紧待测物体,与所测长度平行,不能倾斜。

会看:读数时,视线与刻度尺尺面垂直。

记录的测量结果:数字:准确值+估计值。

4.时间的测量

①基本工具:停表。

②时间的单位及换算

国际单位制,基本单位是秒(s)

其他单位:时(h)、分(min)、毫秒(ms)、微秒(μs)、纳秒(ns)。

5.误差

①定义:测量的数值和真实值之间必然存在的差异就叫误差。

②误差的来源(测量工具、测量方法、测量者):

a.测量时,要用眼睛估读出最小刻度值的下一位数字,是估读就不可能非常准确。

b.仪器本身不准确。

c.环境温度、湿度变化。

二、重难点

重点:1.认识常用的长度测量工具和计时工具。

2.用刻度尺测量物体长度。

难点:1.长度的间接测量方法。

2.误差和错误的区别。

三、知识点归纳及解题技巧

1.长度单位

①长度的国际单位是米,符号m。

②其它常见的长度单位及符号:

千米km、分米dm、厘米cm、毫米mm、微米μm、纳米nm

③常用长度单位之间的换算:(10后面均为立方)

1km=1000m=103m

1dm=0.1m=10-1m

1cm=0.01m=10-2m

1mm=0.001m=10-3m

1μm=0.000001m=10-6m

1nm=0.000000001m=10-9m

2.正确使用刻度尺

会认:认清刻度尺的单位、零刻度线的位置、量程、分度值。

会选:在实际的测量中,并不是分度值越小越好,测量时应先根据实际情况

确定需要达到的程度,再选择满足测量要求的刻度尺。

会放:零刻度线或某一数值刻度线对齐待测物的起始端,使刻度尺有刻度的边贴紧待测物体,与所测长度平行,不能倾斜。

会看:读数时,视线与刻度尺尺面垂直。

记录的测量结果:数字:准确值+估计值。

3.时间的`测量

①基本工具:停表。

②时间的单位及换算

国际单位制,基本单位是秒(s)

其他单位:时(h)、分(min)、毫秒(ms)、微秒(μs)、纳秒(ns)。

1h=60min=3600s

1s=103ms=106μs=109ns

(10后面均为立方)

4.误差

A.误差的来源(测量工具、测量方法、测量者)。

①误差是不可避免的,误差不可能消除,只能尽量的减小。

②减小误差的办法:A、多次测量取平均值。

B.使用精密的测量工具。

C.改进测量方法。

③误差不是错误:

7.机械手控制系统设计 篇七

随着我国现代化工业的不断发展, 机械手在机械化和自动化生产过程中的应用日益广泛, 已经成为现代制造生产系统中的重要组成部分, 不仅可以不知疲劳地重复部分人工操作, 也可以在许多恶劣条件下进行工业生产。PLC具有的诸多优点, 使其在工业控制中应用广泛, 可以灵活方便地实现对机械手的控制。组态软件在PC机上实现对整个工业加工过程的监控, 使得整个生产过程都在监控中安全进行。

1 系统控制要求和工作过程

本系统采用西门子S7-200型PLC作为主控制器, 在PC机上运用STEP 7-Micro WIN系列编程软件对PLC进行软件编程, 采用组态王软件对生产现场进行实时监控。图1为机械手机械部分示意图, 采用顺序控制方式将物体由A带移动到B带。其工作过程是:按下启动开关, 系统启动, 传送带A和传送带B在电机驱动下运转, 传送带A端部的光电开关检测到物体到达预定位置时停止传送, 机械手在原位下移到预设高度, 抓紧A带上的物体, 停止1 s, 上移至起始高度, 左转到达B带正上方, 传送带B端部的光电开关检测到物体后停止运行, 机械手下移到预定高度时放松, 将物体平稳放在B带上, 停止1 s, 机械手上移至预定高度, 传送带B恢复运行, 机械手右转至起始位置, 一个循环工作流程结束。按下停止按钮, 系统只有在一个循环完成后, 才能停止。当系统运转出现异常状况, 急停按钮可以使系统动作立即停止。为了方便调试和故障处理, 本系统采用手动和自动两种工作模式。

2 系统硬件配置

S7-200系列PLC是近年来最常用的小型可编程控制器之一, 系统配置灵活多变, 方便扩展, 易于操作。PLC作为系统的控制核心, 对机械手的各个动作进行控制, 根据系统I/O点数的分析, 系统需要8个数字量输入信号和8个数字量输出信号, 选用西门子PLC系列中的CPU224作为本系统的控制中枢, CPU224本机I/O点数为14入/10出, 不需要添加扩展模块便可以满足系统的控制要求。机械手的上升/下降和左转/右转由双线圈二位电磁阀控制。当下降电磁阀通电, 机械手下降, 若下降电磁阀断电, 机械手停止下降, 保持当前状态。当上升电磁阀通电时, 机械手上升。左转/右转也是由对应的电磁阀控制。夹紧/放松由双线圈二位电磁阀控制, 根据电磁阀状态进行相关动作。在传送带A端部装有光电开关用以检测物品的到来, 机械手上安装有限位开关, 对机械手的各个动作进行限位操作, 确保了机械手动作的准确性。机械手控制系统的I/O分配表如表1。

3 系统软件设计

STEP 7-Micro WIN系列编程软件是常用的S7-200PLC编程软件, 采用梯形图进行编程。在PLC的控制下, 系统可实现自动和手动两种工作模式。自动模式工作过程:按下启动按钮, 系统按照工作顺序自动循环工作, 直到按下停止按钮, 完成一个周期后停止。系统工作出现异常状况, 按下急停按钮时立即停止工作。手动模式工作过程:将自动模式进行分解, 利用按钮对系统的每一个动作实行点动操作。程序编制的内容包括:系统初始化子程序、自动模式和手动模式之间的切换、各个步的点动操作、系统停车与故障处理。编程结束后, 通过PG/PC接口设置通信参数, 建立与PLC的通信, 对程序进行编译, 并将程序下载到PLC中, 启动程序运行监控, 对程序进行调试。系统工作流程图如图2。

梯形图设计包括初始化子程序, 启保停程序, 手动调试子程序和自动运行子程序。当系统出现异常情况时, 可以对系统进行急停。限位开关确保机械手动作准确, 由线圈状态控制各个动作。机械手动作的上/下运动、左/右旋转和夹紧/放松动作不能同时进行, 需要设置互锁环节, 机械手旋转动作只能在上限位时动作, 需要对其设置上限位联锁保护, 相应部分梯形图程序如图3。

4 组态设计

组态王作为一种工控组态软件具有开放性好、适用性强、开发周期短等多种优点, 并能在自控系统中进行组态开发和上传下达。本系统采用组态王6.55对系统进行监控, 通过PPI编程电缆实现计算机与CPU的通信, 波特率设定为9.6kbps, 偶校验, 采用RS232作为通讯接口。完成通信设置后, 进行仿真界面设计, 仿真界面显示对机械手进行控制的各个开关量按钮。组态界面的设计包括手动模式按钮、模式选择、机械手动作状态指示灯、开关, 机械手控制系统仿真画面如图4。

工业现场状况通过动画形式显示在屏幕上, 变量当前值存放在数据库中, 包括系统变量和用户自定义变量。数据库是组态王最核心的部分, 数据词典记录了用户可以使用的所有变量的信息, I/O变量是组态王和PLC相互交换数据的变量, 组态王运行过程中, 一旦I/O变量值发生改变, 该值会自动写入PLC, 每当PLC的值发生改变, 组态王中的变量值也会随着PLC值的变化自动更新。本设计需要组态王软件与PLC交换数据进行机械手运动控制, 采用组态画面实现对系统的监控。完成对基本变量的定义后, 通过动画连接将各个图素与数据库中相对应的定义变量连接起来, 工业现场的变量将通过I/O接口引起实时数据库中变量的变化, 并在组态画面上显示出来。利用命令语言书写程序实现对机械手系统工作过程的控制, 可以提高应用程序的灵活性, 并能正确反映机械手控制系统的控制过程。使用编程电缆连接PLC与计算机, 关闭编程软件, 组态王中相关文件经保存后进入VIEW界面, 实现对PLC系统工作过程的监控。

5 结语

自动化技术的发展促使PLC在工业生产过程中的应用更加广泛, 本文以PLC200作为主控元件, 通过控制系统I/O分配、流程图设计和梯形图编程实现对机械手运动过程的控制, 系统简单易行, 操作方便。选用组态王软件对控制系统进行实时监测与控制, 工作人员可以更加清楚方便地对现场生产实现监控。

摘要:采用西门子PLC200系列可编程控制器实现对机械手工作过程的控制, 通过对系统进行硬件配置和软件设计, 以达到其控制效果, 并应用组态软件组态王对工作过程进行监控和管理, 形成一个完整的机械手控制系统。

关键词:机械手,PLC,组态王

参考文献

[1]吴慧君, 张丽萍, 柳溪.PLC和组态王软件在机械手控制系统中的应用[J].电子技术与软件工程, 2014 (13) :108.

[2]蒋少茵.PLC控制的机械手[J].微计算机信息, 2002, 18 (2) .

8.机械系统设计知识点总结 篇八

关键词:设计制造;传动控制;液压技术

中图分类号:TH137

文献标识码:A

液压机械传动控制系统是一种流体传动与控制技术有效结合的先进技术,其主要包括动力元件、液压元件、控制元件和液压辅助元件。该系統采用液体作为能量传动以及控制的有效介质,并由元件回路控制对能量进行传递。目前该系统已在诸多领域得到广泛应用,特别是机械设计制造领域已离不开液压机械传动控制系统的大量使用,其也促使机械设计制造领域的不断发展,因此研究液压机械传动控制系统在机械设计制造中的实际应用情况意义重大。

一、液压传动技术概述

1.液压传动系统构成

液压传动系统是由多种元素组合而成,如控制装置、辅助装置。在运行过程中,它们发挥着不同的作用。一是动力装置。主要指的是液压泵,能够把原动机的机械能转化为对应的液压能,还能确保液压能满荷;二是控制装置。该装置能够合理控制液压传动系统组成元素,比如,工作介质的方向、压力大小,控制装置具有不同的类型,比如,方向控制阀、流量控制阀;三是工作介质。在日常运用中,主要采用的是矿物油,其具有多样化的功效,比如,可以给液压传动系统提供必要的传递能量。由于液压元件具有功率大、安装简单、易于操控等特点,而收获机长期处于恶劣工作环境下,结构形态多变,需要进行大功率传递等。因此液压传动系统被广泛应用于收获机械中,极大地提高了收获机械的操作性,智能化水平等。

2.液压系统泄漏原因分析

在液压系统中出现泄漏是最常见的问题,而泄漏问题又是多方面的。一是接头处渗漏油。液压设备系统的各液压元件之间均油管路通过接头来完成整个系统的连通,接头的连接出成为最容易出现渗漏油的地方,安装不当引起渗漏油。加工超差引起渗漏油;设备的工作环境较为恶劣,冲击和振动频繁,容易引起接头松动,造成渗漏油。二是管路渗漏油。管路安装时应按规定的弯曲半径,否则产生不同的弯曲内应力,在液压油的作用下逐渐产生渗漏。若弯曲处出现较大的椭圆度,当管内的油压脉动时,会产生纵向裂纹而漏油。三是液压元件阀的表面几何精度不够,阀的同心度不够或者磨损导致漏油;四是密封件的磨损或老化。密封件与运动件之间的长时间摩擦,会使密封件造成磨损,特别是有杂质的油液,会使密封件加大磨损而造成漏油。密封件工作时间长,受到各种腐蚀而老化,降低了密封性能,也是造成泄漏的常见原因。

二、液压机械传动控制系统的实际应用

目前,液压机械传动控制系统,很好地满足了不同行业和领域对于大型设备的机械设计制造需求。在机械设计制造行业中,使用液压机械传动控制系统,可以满足产业高集成化的需求。在保证工作效率的同时,尽量满足施工环境、条件等提出的要求。此外,液压机械传动控制系统在机械设计制造行业中的集成化发展,也说明了我国已经掌握了正确的研发方向,可以研发出科学有效的产品,满足有关行业的生产需求和社会发展的需求,并实现产品价值的最大化。虽然在机械设计制造行业中,液压机械传动控制系统取得了较好的成果,但是液压机械传动控制系统在机械设计制造行业中的应用还存在一些问题,限制了液压机械传动控制系统的发展。为了促进液压机械传动控制系统在机械设计制造行业中的发展,必须要针对液压机械传动控制系统在机械设计制造行业中应用的优缺点进行深入的分析,并采取有效措施解决问题,促使我国液压机械传动控制系统的技术和产品可以达到世界先进水平。液压机械传动控制系统逐步实现和计算机技术的有机结合,扩大其自身的应用范围和领域,更高效率地完成控制目标。液压机械传动控制系统可以更好的控制运动和运力参数,具有较好的传递效率,有效控制输出。总之,液压机械传动控制系统在机械设计制造行业中具有广阔的发展前景。三、液压系统泄露的控制

1.减小泄漏常用的措施

液压系统泄漏原因分析可知,要想减少泄漏采用的方法无非是从结构件的配合间隙、密封件等等方面进行改进,但很难杜绝泄漏的发生。在此以外最用的方法是双向液压锁封油和补油保压装置。增设双向液压锁的方法是将油缸的正反两腔的油液封死,加强执行元件的位置定位,较大限度地减少泄漏,从而保证油缸长时间保持特定伸出量。但是在实际中时常会因系统中液压油污染或磨损,使双向液压锁阀芯密封不严,会产生漏油现象,在载荷的作用下使油缸缩回;增设补油保压装置的方法是利用蓄能器或泵站及时为油缸补油保压,从而保证油缸的定位,但是由于负载的不同,泄漏程度的不同,对于补压压力又不同的要求,过大过小都会导致油缸伸缩,不能保持长时间定位的目的。

2.液压系统的维护

由于液压系统故障异常的多样性和普遍性,同时作为矿用液压支架的核心动力装置,其对于安全生产的重要性不言而喻,因此在维护和保养过程中,必须细致落实,保障系统的安全,这是最根本的出发点。在维护和处理过程中,由于各生产经营单位不同,其对于相关维护工作的重视却应该一致,保障安全生产。

四、结束语

总之,随着机械制造技术的不断发展,新工艺的逐渐出现,以及机械制造的智能化,必然会对机械设计制造中液压机械传动控制系统提出更高的要求。因此,我们只有对其进行深入而细致的研究,弥补其自身不足与缺点,才能更好的体现出在机械制造中的作用,促进我国液压机械传动控制系统的快速发展。

参考文献:

[1]高艳红,张昌松.机械设计制造中液压机械传动控制系统的应用[J].时代农机,2016,(03):74-77

上一篇:学生人生观和价值观下一篇:小学总务工作总结报告