弧长和扇形面积教案

2024-11-26

弧长和扇形面积教案(共6篇)

1.弧长和扇形面积教案 篇一

24.4 弧长和扇形面积(1)

教学目标

了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.

通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长L=S扇形nR2360nR和扇形面积

180的计算公式,并应用这些公式解决一些题目.

nRnR

2重点:n°的圆心角所对的弧长L=,扇形面积S扇=及其它们的应用.

180360 难点:两个公式的应用.

教学过程

一、复习引入

1.圆的周长公式是什么? 2.圆的面积公式是什么?3.什么叫弧长?

二、探索新知

(一)、(小黑板)请同学们独立完成下题:设圆的半径为R,则:

1、圆的周长可以看作______度的圆心角所对的弧.

1°的圆心角所对的弧长是_______.2°的圆心角所对的弧长是_______.

4°的圆心角所对的弧长是_______.„„

n°的圆心角所对的弧长是_______.

2、应用公式:请全体学生独立完成对“弯形管道——p110”的计算。

3、集体讲解。

4、练习p112第1题

(二)、如图:

像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.

(小黑板),请同学们结合圆面积S=R2的公式,独立完成下题:

1.该图的面积可以看作是_______度的圆心角所对的扇形的面积.

设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______.

设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______.

设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.

„„

设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.

nR因此:在半径为R的圆中,圆心角n°的扇形

3602、应用公式p111例1 学生先独立思考,在讨论,最后老师讲评和板书

3、练习:练习p112第3题

三、小结

让学生自己说出:n°的圆心角所对的弧长和扇形面积的计算公式

四、作业p114复习巩固

第1题、第2题

S扇形AOB

2.《弧长和扇形面积》教学设计 篇二

第二课时

一、教学目标

(一)学习目标

1.了解圆锥母线的概念,探索并理解圆锥侧面和全面积计算公式; 2.会灵活应用圆锥侧面积和全面积计算公式解决问题.

(二)学习重点

探究圆锥侧面积和全面积的计算公式.(三)学习难点

应用圆锥侧面积和全面积计算公式解决问题

二、教学设计 1.自主学习

(1)弧长计算公式和扇形面积计算公式回顾

师问:上节课我们学习了弧长计算公式和扇形面积计算公式,你们还记得它们是怎样的吗? 生答:弧长l=半径)

生答:扇形面积S=(2)圆锥的再认识

(教师出示一组生活中含圆锥形物体的图片)nR2,(其中n表示扇形圆心角的度数,R表示扇形所在圆的半径)360nnR2R=,(其中n表示弧所对的圆心角的度数,R表示弧所在圆的360180

师问:上面的物体中,有你熟悉的立体图形吗? 生答:圆锥体

师问:非常好,它们都含有圆锥体(如下图),那么什么是圆锥体呢?

生答:圆锥是由一个底面和一个侧面组成的,它的底面是一个圆,它的侧面是一个曲面. 师问:我们将圆锥顶点和底面圆周上任意一点连接的线段称作圆锥的母线,那么一个圆锥有多少条母线呢?它们在数量上有什么关系? 生答:有无数条,它们是相等的. 师问:为什么是相等的呢?

生答:由勾股定理,每条母线l=h2r2,h表示圆锥的高,r表示底面半径,对于同一个圆锥体,h和r的长是固定的,因此母线的长也是固定的.

师:非常好!我们不仅知道母线长度是相同的,而且还了解了有关母线的一条非常重要的性质:母线l、圆锥高h、底面半径r之间满足:l2h2r

2【设计意图】本节课探究的圆锥的侧面积和全面积,因此有必要重新认识圆锥,另外,本节课必须使用到上节课学习的弧长计算公式和扇形面积计算公式,因此也有必要回顾这两个公式,为本节课教学内容顺利进行做铺垫.

二、合作交流

师:大家分析得非常好,接下来请大家以小组为单位,完成下列问题串:

如图,沿圆锥的一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,(1)设圆锥的母线长为l,底面圆的半径为r,如图所示,那么这个扇形的半径为________;(2)扇形的弧长其实是底面圆周展开得到的,所以扇形弧长为________;(3)因此圆锥的侧面积为________,圆锥的全面积为________

l

(学生先独立思考,再小组合作完成,并展示)归纳:

①如上图,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2r,根据上节课学习的扇形面积公式S扇形半径)可知:该圆锥的侧面展开图的面积是S侧1lR(其中l表示扇形的弧长,R表示扇形212rlrl; 2②圆锥的侧面积与底面积之和称为圆锥的全面积,表示为:

S全S侧S底=rlr2r(lr)

③通过上面两个公式,我们可以看到,只要知道母线、底面半径就可以求圆锥的侧面积的全面积. 3.展示提升

如图,玩具厂生产一种圣诞老人的帽子,其帽身是圆锥形,母线SB=15 cm,底面半径OB=5 cm,要生产这种帽身10000个,你能帮玩具厂算一算帽身至少需多少平方米的材料吗?(取3.142)

【知识点】圆锥侧面积在生活问题中的应用 【数学思想】数形结合

【解题过程】解:∵母线SB=15 cm,底面半径OB=5 cm ∴一顶圣诞帽需要的材料是51575cm²

∴生产这种帽身10000个,需要7510000750000cm²=75m²≈235.65 m². ∴玩具厂至少需235.65平方米的材料

【思路点拨】已知底面半径和母线长,可以直接套用圆锥侧面积公式即可,但实际问题需要注意单位问题. 【答案】235.65m2

四、课堂巩固

1、在Rt△ABC中,∠ACB=90o,AC=8,BC=6,将△ABC绕AC

所在的直线k旋转一周得到一个旋转体,则该旋转体的侧面积为()

A.30π

B.40π

C.50π

D.60π

2、已知圆锥的底面半径为3,母线为4,则它的侧面积是_______,全面积是________.【知识点】圆锥侧面积的计算

【解题过程】解:∵母线l=4,底面半径r=3 ∴由圆锥侧面积计算公式得:S侧rl=3412 由圆锥全面积计算公式得:S全r(lr)=3(34)21

【思路点拨】已知底面半径和母线长,可以直接套用圆锥侧面积和全面积计算公式求得. 【答案】12

21 练

3、已知圆锥的底面半径为3,高为4,则它的侧面积是_______,全面积是_______.4、已知圆锥的母线长是5cm,侧面积是20cm²,则这个圆锥的底面半径是________. 【知识点】圆锥侧面积计算公式的逆用

【思路点拨】已知圆锥的母线、圆锥侧面积,可以逆用圆锥侧面积的计算公式求得圆锥底面半径,实际上圆锥母线、圆锥底面半径、圆锥侧面积三者中可以“知二求一”. 【解题过程】解:∵母线长l=5cm,圆锥侧面积S侧20cm2 ∴圆锥侧面积计算公式:S侧rlr520 解得:r4 ∴底面半径为4cm 【答案】4cm

5、圆锥的底面半径是4,母线长是12,则这个圆锥侧面展开图的圆心角度数是_______. 【知识点】圆锥侧面积的计算,扇形面积的计算

【解题过程】解法一:∵圆锥的底面半径是4,母线长是12 ∴圆锥侧面积=S侧rl41248 设圆锥侧面展开图的圆心角度数为n 所以展开图的面积还可以表示为:∴

n122 360n122=48

解得:n=120 3604 ∴这个圆锥侧面展开图的圆心角度数是120°. 解法二:∵圆锥的底面半径是4 ∴底面周长=248

设圆锥侧面展开图的圆心角度数为n ∵圆锥的母线长是12 ∴侧面展开图的弧长=∴8=n12 180n12

解得:n=120 180∴这个圆锥侧面展开图的圆心角度数是120°.

【思路点拨】圆锥侧面展开图的面积一方面可以通过母线和底面半径来求,即Srl;另一方面也可以通过扇形本身的面积计算公式来求,即S解这个方程即可得到圆锥侧面展开图的圆心角nnnl2,这样就得到rl=l2,360360360r,其中r表示圆锥底面半径,l表示圆lnnl,这样就得到l=180180锥母线.还可以根据圆锥侧面展开图的弧长来建立等量关系,一方面圆锥侧面展开图的弧长等于底面周长2r;另一方面圆锥侧面展开图的弧长等于2r,同样可以得到圆锥侧面展开图的圆心角n360r. l【答案】120° 五.课堂小结

3.弧长和扇形面积教案 篇三

扇形弧长、面积与圆锥的侧面积教案

扇形弧长、面积与圆锥的侧面积教案 竞业园学校数学组张 一、创设情境,导入: 教师提前准备一个扇形,问学生:这是什么图形?学生回答后,教师引领学生说出扇形的半径、弧,接着演示由扇形到圆锥的变化过程,要求学生说出圆锥的各部分的名称,如:圆锥的底面,侧面,母线等,并说明在这个变化过程中哪些量发生了变化,哪些量没有发生变化?从而引入课题----扇形与圆锥。 (设计意图:通过设计扇形与圆锥的转化这一活动过程,使学生明确扇形与圆锥各部分的对应关系,激发学生的探究欲望,并对本节的难点有了一个初步的了解,为突破难点奠定基础。) 二、展示目标: 引领学生在组内交流自己制定的学习目标,并结合口号和学案上的目标进一步补充完善,然后一人展示,其他小组补充归纳,达成共识: 1.进一步熟练弧长公式和扇形面积公式; 2.明确圆锥的侧面展开图,会进行圆锥的侧面积、全面积的计算。 3.渗透“从特殊到一般,再由一般到特殊”的辩证思想及数形结合的思想方法。 4.通过小组交流和实际应用的问题,提高学生的学习兴趣,培养合作精神。 (设计意图:学生预习时制定的目标是学生对本节课的认识,可能不够全面,通过交流,对照,使学生进一步明确本节课的学习目标,在学习时能够做到有的放矢。) 三、组织自学:(时间5分钟) (一)教师组织学生阅读九年级上册课本139~147页,整理本单元的知识点,解答文本中的问题,并提出自己的问题,记录自己不明白的问题。 认真跳读课本139-147页内容,完成下列问题: 1.在半径为R的圆中,n°的圆心角所对的弧长公式是什么? 2.什么是扇形?扇形面积公式是什么?其中涉及了几个量?扇形的周长公式是什么?包括几部分? 3.圆锥中有哪些基本概念?展开图中呢?其中有哪些量是对应的?写出圆锥的侧面积和全面积公式? 4.运用本节知识能解决现实生活中的哪些问题?看谁举的例子多。 (二)教师巡视,了解学生的预习与自学情况,重点关注各组的4号,并及时给予指导。预计学生可能遇到的问题: 1.扇形的面积公式是怎样得来的? 2.圆锥的侧面积公式是怎么得到的? 3.运用本节知识能解决现实生活中的哪些问题? (设计意图:学生在自学时目的明确,并引领学生解疑质疑,培养学生的自学能力,发现问题的意识,解疑质疑的能力;引导学生总结知识点,及时归纳形成知识网络,培养良好的学习习惯;引导学生思考本节知识在生活中的应用,让学生感受生活处处有数学,培养学生的的学数学的兴趣。教师通过巡视,及时了解自己的预设与学生存在疑难的差距,及时调整自己的教学,并做好个辅指导。) 四、组织交流: (一)小组交流:1.各组的数学课代表负责组织,各成员积极参与解答文本中的问题及自己不明白的问题,语文课代表展示本单元的知识网络图,其他成员进行补充,数学课代表总结本章的重点题型及容易出错的问题,物理课代表记录本组解答不了的问题,以备全班交流。2.教师巡视,参与各组的交流,了解交流情况及存在的问题,及时给予指导,评价与引领。 (设计意图:在分工明确的情况下,各成员积极参与,各负其责,很大程度的提高了交流的效率,通过交流各有所获,各有提高。教师通过巡视,及时了解学生在自学和交流中存在的问题,以便更好的引领学生参与全班交流。) (二)全班交流:1.各组同学积极提出本组的疑问,其他小组及时给予解答,补充。教师引领各组学生积极参与并适时进行点拨指导。 2.预计各组可能提出的问题: (1)在扇形与圆锥转化的过程中,哪些量发生了变化?哪些量没有发生变化? (2)怎样求阴影部分的面积? (3)本单元知识可以解决生活中的哪些问题?(解析课本重点习题的思路) (设计意图:通过教师的及时评价,引领学生积极参与,并让学生体会成功的愉悦,感受合作的快乐。通过预设问题突出本节的重点,突破难点,形成方法,体会其中数学思想:转化,数形结合的应用) 五、知识梳理:(一)要求:认真审题,规范书写,注重识记。 (二)时间:4分钟 (三)知识梳理的题目: 1.在半径为R的.圆中,360°的圆心角所对的弧长就是___________即C=_____,所以1°的圆心角所对的弧长是____________,于是在半径为R的圆中,n°的圆心角所对的弧长l=________. 2.一条弧和经过这条弧的端点的两条半径所组成的图形叫做________.其面积S扇=__________,因为扇形的弧长=_________,扇形的面积_______________________,所以,扇形的面积的另一个计算公式是S扇=_________.其中S扇,,h,R四个量中的任意两个量,都可以求出另外两个量;扇形的周长=__________ 3.(1)弓形的定义:由_一条_弦_及其所对的弧组成的图形叫做弓形; (2)弓形的周长=_弦长加弧长. (3)弓形的面积=S扇±S△(说明:弓形的面积可以看作扇形的面积和三角形面积的分解和组合,弓形的面积都可以化为扇形面积与三角形面积的和或差。) 4.圆柱的侧面积S圆柱侧=_______,全面积S圆柱全=______________=_________________. 5.圆锥底面上圆周上任意一点与圆锥顶点的连线叫做圆锥的______,连接顶点与底面圆心的线段叫做圆锥的______。 6.圆锥侧面积S圆锥侧=________,圆锥全面积S圆锥全=____________. (四)交流订正答案,小组长负责,重点检查4号的完成情况。展示答案。1分钟识记理解概念,公式。 (设计意图:培养学生答题时的时间意识,规范意识。通过知识梳理进一步总结本节课的知识要点,培养学生总结归纳的能力。小组内互相纠错,评价,使大家共同进步、提高。)

4.弧长与扇形的面积教学反思 篇四

前几天,我上了“弧长和扇形的面积”一课在课堂中体现出许多问题,现做一点自我反思。

在新课程理念下,强调了几何建摸过程和几何推理的要求要发生变化。图形由于自身的特点,教之其他的数学模型更加直观、形象,更易于从现实情景中抽象出数学的.概念、理论和方法。在课中我改变以往那种教师讲学生听、教师问学生答的传统的教学方法,让学生动手制作圆锥经历了知识的形成过程,所有的学生都参与到活动中来,充分调动了学生的积极性,让学生通过制作、再拆分,很容易的得到了圆锥侧面积和表面积的计算方法。学生始终参与了圆锥面积公式的形成过程,这完全符合新课程所倡导的“以学生为主体,教师为主导”的教学理念。

5.圆周长和弧长数学教案 篇五

1、应用圆周长、弧长公式综合圆的有关知识解答问题;

2、培养学生综合运用知识的能力和数学模型的能力;

3、通过应用题的教学,向学生渗透理论联系实际的观点.

教学重点:灵活运用弧长公式解有关的`应用题.

教学难点:建立数学模型.

教学活动设计:

(一)灵活运用弧长公式

例1、填空:

(1)半径为3cm,120°的圆心角所对的弧长是_______cm;

(2)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;

(3)已知半径为3,则弧长为π的弧所对的圆心角为_______.

(学生独立完成,在弧长公式中l、n、R知二求一.)

答案:(1)2π;(2)24;(3)60°.

说明:使学生灵活运用公式,为综合题目作准备.

练习:P196练习第1题

(二)综合应用题

例2、如图,两个皮带轮的中心的距离为2.1m,直径分别为0.65m和0.24m.(1)求皮带长(保留三个有效数字);(2)如果小轮每分转750转,求大轮每分约转多少转.

教师引导学生建立数学模型:

分析:(1)皮带长包括哪几部分(+DC++AB);

(2)“两个皮带轮的中心的距离为2.1m”,给我们解决此题提供了什么数学信息?

6.弧长和扇形面积教案 篇六

主备人

吴邦杰

一、教材分析: 1、教材的地位与作用

本节课的教学内容是义务教育课程标准实验教科书,新人教版九年级上册新课标实验教材《第24章圆》中的 “弧长和扇形的面积”,这个课题学生在前阶段学完了 “圆的认识”、“与圆有关的位置关系”、“正多边形和圆”的基础上进行的。本课由特殊到一般应用归纳类比的方法探索弧长及扇形面积公式,并运用公式解决一些具体问题,为学生在今后的学习及生活中能更好地运用数学作准备。

2、教学目标:

(1)认识扇形,会计算弧长和扇形的面积,通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获新知的能力。

(2)通过思考问题,培养学生动脑的好习惯。

(3)通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知的能力。

3、教学重点:弧长和扇形面积公式,准确计算弧长和扇形的面积。

4、教学难点:运用弧长和扇形的面积公式计算比较复杂图形的面积。

二、教法分析

针对初三学生的年龄特点和心理特征,以及他们现有知识水平,通过发现动态形成“弧长和扇形的面积”的经过启迪学生思维,通过小组合作与交流及尝试练习,促进学生共同进步,并用肯定和激励的言语鼓舞、激励学生。

三、学法分析

通过教学引导学生关注身边的数学,并借助如何正确理解弧长公式、扇形面积公式的推导。会运用公式计算弧长、扇形及简单组合图形的面积。培养学生的创新能力和概括表达能力,运用通过介绍扇面的文化,渗透艺术文化熏陶和情感的教育。

四、教学过程分析

活动1 设置问题情境引入课题

制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,这就涉及到计算弧长的问题,通过这一问题引入弧长,引出下面的探索过程。

活动2

探索弧长公式

(1)半径为R的圆,周长是多少?

(2)圆的周长可以看作是多少度的圆心角所对的弧?(3)1°圆心角所对弧长是多少?(4)140°的圆心角所对的弧长是多少?

(5)若设⊙O半径为R, n°的圆心角所对的弧长为 L ,则

l nR180 教师提出问题,引导学生分析弧长和圆周长之间的关系,推导出n°的圆心角所对的 弧长的计算公式。引导学生层层深入,逐步分析,问题尽量由学生回答,相互补充,得出结论。使学生明确探索一个新的知识要从学过的知识入手,找寻它们的联系,探究规律,得出结论。

活动3 巩固弧长公式

一、完成“试一试”中的题目

二、实际应用,计算引入新课时提出的问题。

提问学生从图中获得哪些信息,通过练习,使学生掌握弧长公式中弧长、半径、圆心角三者之间的关系.对实际问题引导学生分步分析,分步计算。体会数学来源于生活并服务于生活。

活动4 探索扇形面积公式(1)半径为R的圆,面积是多少?

(2)圆面可以看作是多少度的圆心角所对的扇形?(3)1°圆心角所对扇形面积是多少?

若设⊙O半径为R, n°的圆心角所对的扇形面积为S,则s扇nR3602

学生在探索出弧长公式的基础上,自己尝试寻找探索方法,将扇形面积和圆的面积结合起来,分析得出 n°的圆心角所对的扇形面积公式。

学生要学以致用,在弧长公式的推导过程中,学生在教师引导下分析得出;而扇形面积公式完全由学生自己推导,锻炼他们的探索新知识的能力,体验成功的快乐。

活动5 记忆公式并用弧长表示扇形面积

教师给出两个公式,学生尝试用弧长表示扇形面积。在合作交流的基础上尝试推导出扇形面积和弧长之间的关系。

活动6 巩固扇形面积公式

教师出示两个基本的练习题,学生尝试使用公式解决.活动7求不规则图形的面积

知识要学以致用,特别是要与实际相联系。教师出示幻灯片,求有水部分的弓形面积。学生结合图形分析解体思路,并通过小组合作将分析过程简单的写在草稿本上,请位同学进行板演,对在小组中出现不同的分析思路都给以肯定。在学生理解的基础上,讲解解题过程,再跟屏幕上的答案对照,完善。.活动8 课堂小结

号召学生自己总结本节课所学知识,相互补充,以进一步巩固所学知识。

通过小结和反思,激发学生主动参与意识,为每个学生创造在数学活动中获得活动经验的机会.

最后布置作业:

上一篇:幼儿园小班新年活动下一篇:初中一年级书法教案