八上几何证明题解析

2024-07-10

八上几何证明题解析(共12篇)

1.八上几何证明题解析 篇一

高中几何证明题

如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=1/2AB=1.(1)求证,D1E//平面ACB1

(2)求证,平面D1B1E垂直平面DCB1

证明:

1):连接AD1,AD1²=AD²+DD1²=B1C1²+C1E²=B1E²

所以AD1=B1E

同理可证AB1=D1E

所以四边形AB1ED1为平行四边形,AB1//A1E

因为AB1在平面ACB1上

所以D1E//平面ACB1

2):连接A1D,A1B1//CD,面A1B1CD与面CDB1为同一个平面

由(1)可知面D1B1E与面AD1B1E为同一平面

正方形ADD1A1的对角线AD1⊥A1D

在长方体ABCD-A1B1C1D1中,CD⊥面ADD1A1,所以CD⊥AD1

AD1与A1D相交,所以AD1⊥AB1ED1

所以面A1B1CD⊥AD1B1E

即:面D1B1E⊥面DCB1

我现在高二,以前老师教几何证明没学好,现在想亡羊补牢.但不知道这类型题应抓什么学,找什么记,哪些是基础,证明的步骤....只有多练,真的,几何证明题有很多固定的结题模式,但是参考书不会给你列出来,老师也不讲,你随便买一本几何专题的练习书来做,或者,如果你定力不好的话,可以去报一个补习班,专门补习几何专题的。

我从你想知道的这些知识觉得你有点急于求成,但是学好几何不是一天两天的事,其实高考的几何也不会很难的。

做得多,有了感觉,考试的时候自然得心应手,这是实话。

已知pA⊥平面ABCD,且四边形ABCD为矩形,M,N分别是AB,pC的中点.(1)证MN⊥CD.(2)若∠pDA=45度,求证MN⊥平面pCD

第一问,我证出来了.麻烦能讲下解这类题的思路

满意答案好评率:100%

对于这种空间几何题,用向量解决是一种通法,不知你学过没。但对于这一题,立体几何的知识足够解决了,记住面线垂直判定的方法,本质为证明线线垂直,找到平面内的两条相交直线与那条直线垂直,即可得证。此题(2)问,只要找pD和CD即可,注意∠pDA=45度这个条件即可证pD⊥MN。不懂追问。

继续追问:

∠pDA=45度这个条件即可证pD⊥MN?

补充回答:∠pDA=45度,可知△pAD为等腰直角△,取pD中点E,连接AE和AN,可以知道四边形AMNE为平行四边形,可知MN∥AE,而AE⊥pD(△pAD为等腰直角△,E为中点),则pD⊥MN。

2.八上几何证明题解析 篇二

【题目】如图1, 已知, 在△ABC中, AB=AC, E是AC延长线的一点, 点F在AB上, 并且BF=CE, 连接FE交BC于D, 求证:FD=DE.

在教学时, 按以下五个步骤进行.

一、首先引导学生认真审题

要求学生根据题意、对照图形把题目中的已知条件和求证的结论, 用自己的语言说出来, 明确这道题已经告诉了什么, 将要求我们干什么, 这是解题的基础.

学生在说的过程中, 有可能叙述不流畅、不完整, 或者照本宣读, 此时教师要适时引导, 逐步培养学生善于抓住重点和关键词, 力争做到简明扼要.

二、引导学生认真分析题目结论成立的条件

根据已有的知识, 组织学生讨论两条线段在什么情形下才能相等, 通过学生陈述, 把所有可能的情况都罗列出来, 并加以归纳总结.这样不但使学生更加明确判断两条线段相等的先决条件, 而且也使学生对已学过的相关知识得到了进一步的巩固.

三、引导学生针对具体问题进行具体分析, 把解题的思路和方法准确地叙述出来

在解答这道题时, 根据线段FD和DE在图形中所在的具体位置, 虽然直接找不出判断这两条线段相等的条件, 但可以通过添加辅助线的方法进行铺垫, 把FD和DE设置到一定的图形中, 创造出解决问题的条件.例如以下四种不同添加辅助线的方法, 就有不同的解题思路和方法.

方法一是过F点作FH∥AE交BC于点H;方法二是过E点作EP∥AB交BC的延长线于点P, 两者都是把所求证的两条线段设置在一组三角形中, 利用全等三角形的性质来证明.

方法三是过F点作FM∥BC交AC于点M;方法四是过E点作EN∥BC交AB的延长线于点N, 两者都是把所求证的两条线段设置在同一个三角形中, 利用三角形中位线的性质来证明.

理清解题思路, 设计最佳解题方案, 这是解决问题的关键.因此, 教师在要求学生巩固好已学知识的前提下, 指导学生掌握解题程序, 善于挖掘和创设条件, 通过转化、推理, 把复杂的、生疏的问题转化为简单的、熟悉的, 有的放矢地寻求正确的解题途径, 理清思路, 确定方案, 解决问题.

四、引导学生陈述并写出题目的解答过程

解题思路确定后, 无论选择哪种方法, 都要求学生从添加辅助元素开始, 利用已知条件, 正确、合理、简捷、清楚、完整地表达出问题的解决过程.这就要求理顺思路, 有理有据地按照逻辑规律, 由已知条件出发, 逐步推演、转化, 进行有序、合理、正确的推理, 建立起已知到结论的清楚、简明、完善的道路, 以实现问题的解决, 过程陈述力争达到完美.在此基础上, 再让学生把证明过程完整地书写出来, 每一步都要做到有根有据、有条有理、规范有序、严谨详尽无遗漏.

五、指导学生检查和反思题目解答的全过程

检查和反思是学生对自身活动进行回顾、思考、总结、评价、调节的过程, 对巩固所学知识、提高分析和解决问题的能力有着不可忽视的作用.教学反思意在通过对题目解答过程的回顾, 组织学生认真思考我们所确定选择的思路和方法是否可行, 推理是否合乎逻辑, 是否还有其他的解法, 对解题过程陈述是否做到了尽善尽美, 书写是否严谨完整, 进而再总结出解题的一般规律并加以推广, 使学生进一步掌握解题的方法和技巧, 养成良好习惯, 提高学习能力.

3.谈谈如何引导学生证明几何题 篇三

1.从题设和结论找思路

题目拿来,不要急于下手,仔细分析;从题设出发,看能推出什么结论;再看看结论:还需要什么条件,然后往中间凑,这种两头挤中间凑的方法是几何证明题的一种最常用的方法,也是一种很重要的方法。

如7.8节 切线的判定和性质(P91)

例1、已知:如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

求证:直线AB是⊙O的切线.

这题由已知条件OA=OB,就可以推出△OAB是等腰三角形,又由CA=CB,就可以推出OC是等腰△OAB的底边AB边上的高,而结论是要求证直线AB是⊙O的切线,也就是要求证OC上AB,这就立马想到添辅助线连结OC,同已知推出的结论相吻合,到达了求解的目的。

又如7.11节 弦切角(P108)

例2、已知:如图,⊙O和⊙O'都经过A、B两点,AC是OO'的切线,交⊙O于点C,AD是⊙O的切线,交⊙O'于点D.

求证:AB2=BC·BD

这题先从结论来考虑,要求证四条线段AB、BC、BD、AB成等积式,就是看这四条线段所在的△ABC和△DBA是否相似,而要证明两三角形相似,主要是从角度考虑。再来看已知条件,AC是⊙O'的切线,则由弦切角定理,可以得到∠2=∠D.AD是⊙O的切线,可以推出∠1=∠C,而这四个角又刚好分别是那两个三角形的角,这样问题就得到了解决。

再如7·8节 切线的判定和性质(P93)

例2、如图,AB为⊙O的直径。C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

求证:AC平分∠DAB.

这题要求证AC平分∠DAB,就是要求证∠1=∠2.而已知条件AD⊥DC,DC是切线C是切点,就想到DC垂直于过切点的半径,所以这题应该连结OC(同本节的例1综合在一起得到,在解有关圆的切线问题时,常常需要作出过切点的半径),则可推出AD∥OC,.因此有∠2=∠3,而∠1=∠3,于是得出结论。

像这样的例子这一章还有不少,而且初一、初二的几何课本也有很多我在这儿就不一一赘述了.

2.从知识点找思路

如果上述的方法行不通,那我们就想一想:这个题目它考的是什么知识点?它是在哪一章节里出现的?那我们就从这一节的有关定理、定义入手。

比如P104如何去求证圆的外切四边形的两组对边的和相等这个题目好象不知从何下手,然而,这是7.10切线长定理这一小节的题,我们应该运用这一节的知识点,从切线长定理寻找突破口,于是不难得出AP=AL,BM=BL,CM=CN,DP=DN.再利用等式的性质,就得出了命题的结论.

再比如,P87习题7.2B组第5题

如图:⊙O和⊙O'都经过AB两点,过点B作直线交⊙O于点C,交⊙O于点D,G为圆外一点,GC交⊙O于点E,GD交⊙O'于点F.

求证:∠GEA+∠GFA=180°.

本题也是一样,要求证这两个角互补,那么这两个角是不是邻补角?是不是平行线的同旁内角?是不是圆内接四边形的两个对角?都不是,那怎么办?这个题是出在圆内接四边形这一节,而本节学了圆内接四边形的对角互补,并且任何一个外角都等于它的内对角这个定理。那么这两个角是不是圆内接四边形的外角?这个时候很多同学恍然大悟,纷纷抢着回答:“连结AB”则问题一目了然,∠GEA=∠ABC,∠GFA=∠ABD.于是得出结论。

还有7.4节圆心角、弧、弦、弦心距之间的关系(P72)

例1、如图:点O是∠EPF的平分线上的一点,以O为圆心的圆和角的两边分别交于点A、B和C、D.

求证:AB=CD.

这题已经PO是∠EPF的平分线,就应该想到角平分线的性质定理:角半分线上的点到角两边的距离相等,而这题要求证的两条相等线段AB和CD又是⊙O的两条弦,结合这一节课所学的定理的推论马上就想到作出弦AB和CD的弦心距OM和ON,问题又解决了。

3.从辅助线寻找思路

我时常告诉学生,你们可以从一些辅助线寻找突破口。如:7.3节 垂直于弦的直径

在这一小节里,计算有关弦的问题时,常常需要作“垂直于弦的直径”作为辅助线。实际上,往往只须从圆心作一条与弦垂直的线段。作了这条辅助线后,那么这条弦的一半、以及弦的弦心距、还有过这条弦的端点的半径这三条线段就构成了一个直角三角形,再通过解直角三角形,得出我们所要求解的线段。如P61 例1、P65 例4、P67 习题7.1 A组第13题、第15题、第16题、以及B组第2、3、4题、P198 复习题七第1、2题等都可以通过三条特殊的线段,解直角三角形,得出我们所要求解的结论。在这里我就不再一一例举了。

以上三点是我在圆这一章的教学体会。笔者始终认为要想使学生学好数学,作为一个中学数学教师,应该从初一抓起,每一个例题都要给学生分析透彻,讲细、讲透,找一些精练的题目给学生做一做、练一练,让学生一步一个脚印,踏踏实实,把基础打扎实、打牢固,这样不至于到了初三,很多同学的几何学不下去。

4.初一几何证明题 篇四

1.过一点

2.过一点,有且只有直线与这条直线平行;

3.两条直线相交的,它们的交点叫做;4.直线外一点与直线上各点连接的中,最短;A B 5.如果C[图1]6.如图1,AB、CD相交于O点,OE⊥CD,∠1和∠2叫做,∠1和∠3叫做,∠1和∠4叫做,∠2和∠3叫做;A7.如图2,AC⊥BC,CD⊥AB,B点到AC的距离是A点到BC的距离是,C点到AB的距离是D43

8.如图3,∠1=110°,∠2=75°,∠3=110°,∠4=;CB

二.判断题[图2][图3] 1.有一条公共边的两个角是邻补角;()2.不相交的两条直线叫做平行线;()

3.垂直于同一直线的两条直线平行;()4.命题都是正确的;()

5.命题都是由题设和结论两部分组成()6.一个角的邻补角有两个;()三.选择题

1.下列命题中是真命题的是()A、相等的角是对顶角B、如果a⊥b,a⊥c,那

么b⊥cC、互为补角的两个角一定是邻补角D、如果a∥b,a⊥c,那么b⊥c 2.下列语句中不是命题的是()A、过直线AB外一点C作AB的平行线CF B、任意两个奇数之和是偶数C、同旁内角互补,则两直线平行D、两个角互为

补角,与这两个角所在位置无关A 3.如图4,已知∠1=∠2,若要∠3=∠4,则需()DA、∠1=∠3B、∠2=∠3C、∠1=∠4D、AB∥CDC [图4] 4.将命题“同角的补角相等”改写成“如果„„,那么„„”的形式,正确的是()

A.如果同角的补角,那么相等B.如果两个角是同一个角,那么它们的补角相等 C.如果有一个角,那么它们的补角相等D.如果两个角是同一个角的补角,那么它们相等 四.解答下列各题 :P 1.如图5,能表示点到直线(或线段)的距离的线段QAC 有、、;ABF 2.如图6,直线AB、CD分别和EF相交,已知AB∥CD,OREBBA平分∠CBE,∠CBF=∠DFE,与∠D相等的角有∠[图5][图6]D∠、∠、∠、∠等五个。C 五.证明题E[图8]如图7,已知:BE平分∠ABC,∠1=∠3。求证:DE∥BCB[图7]CADB

六.填空题

1.过一点可以画条直线,过两点可以画 2.在图8中,共有条线段,共有个锐角,个直角,∠A的余角是; 3.AB=3.8cm,延长线段AB到C,使BC=1cm,再反向延长AB到D,使AD=3cm,E是AD中点,F是CD的中点,则EF=cm ;

4.35.56°=度 分秒;105°45′15″—48°37′26 ″ 5.如图9,三角形ABC中,D是BC上一点,E是AC上一点,AD与BE交于F点,则图中共有E 6.如图10,图中共有条射线,七.计算题BDC 1.互补的两个角的比是1:2,求这两个角各是多少度?[图9]

A2.互余的两角的差为15°,小角的补角比大角的补角大多少?E

BDC[图10] 1.如图11,AOB是一条直线,OD是∠BOC的平分线,若∠AOC=34°56′求∠BOD的度数;

DC 八.画图题。1.已知∠α,画出它的余角和补角,并表示出来AOB

[图11]北 2.已知∠α和∠β,画一个角,使它等于2∠α—∠β北偏西20

5.初二几何证明题 篇五

如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP-CQ。设AP=x

(1)当PQ∥AD时,求x的值;

(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;

(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围。

21.(本小题满分9分)

如图,直线yxm与双曲线y

(1)求m及k的值; k相交于A(2,1)、B两点. xyxm,(2)不解关于x、y的方程组直接写出点B的坐标; ky,x

(3)直线y2x4m经过点B吗?请说明理由.

(第21题)

28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.

(1)点C坐标是),当点D运动8.5秒时所在位置的坐标是,);

(2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大;

(3)点E在线段AB上以同样速度由点A向点B运动,如题28(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似(只考虑以点A.O为对应顶点的情况):

题28(a)图题28(b)图

(10江苏南京)21.(7分)如图,四边形ABCD的对角线AC、BD相较于点O,△ABC≌△BAD。求证:(1)OA=OB;(2)AB∥CD.(10江苏南京)28.(8分)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A

出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连结EG、FG。

(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;

(2)P是MG的中点,请直接写出点P的运动路线的长。

23.(本题8分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,∥BF,连接BE、CF.

(1)求证:△BDF≌△CDE;

(2)若AB=AC,求证:四边形BFCE是菱形.

CE

27.(本题8分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP.

(1)如图②,若M为AD边的中点,①,△AEM的周长=_____cm;

②求证:EP=AE+DP;

(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.

27.(本题满分12分)如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75º,以CD为一边的等边△DCE的另一顶点E在腰AB上.(1)求∠AED的度数;

(2)求证:AB=BC;

(3)如图2所示,若F为线段CD上一点,∠FBC=30º.

DF求 FC 的值.

图1 E C

6.高考几何证明题 篇六

高考几何证明题

输入内容已经达到长度限制

∠B=2∠DCN

证明:

∵CN⊥CM,∴∠2+∠3=90°,∴∠1+∠4=90°;

又∠1=∠2,∴∠3=∠4,∴∠BCD=2∠DCN;

∵AB//DE,∴∠B=∠BCD;

于是∠B=2∠DCN。

11

输入内容已经达到长度限制

∠B=2∠DCN

证明:

∵CN⊥CM,∴∠2+∠3=90°,∴∠1+∠4=90°;

又∠1=∠2,∴∠3=∠4,∴∠BCD=2∠DCN;

∵AB//DE,∴∠B=∠BCD;

于是∠B=2∠DCN。

12、

空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。

如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.

立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。

以下用向量法求解的简单常识:

1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得 或对空间一定点O有

2、对空间任一点O和不共线的三点A,B,C,若: (其中x+y+z=1),则四点P、A、B、C共面.

3、利用向量证a‖b,就是分别在a,b上取向量 (k∈R).

4、利用向量证在线a⊥b,就是分别在a,b上取向量 .

5、利用向量求两直线a与b的夹角,就是分别在a,b上取 ,求: 的问题.

6、利用向量求距离就是转化成求向量的模问题: .

7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.

13

空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。

如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.

立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。

以下用向量法求解的简单常识:

1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得 或对空间一定点O有

2、对空间任一点O和不共线的三点A,B,C,若: (其中x+y+z=1),则四点P、A、B、C共面.

3、利用向量证a‖b,就是分别在a,b上取向量 (k∈R).

4、利用向量证在线a⊥b,就是分别在a,b上取向量 .

5、利用向量求两直线a与b的夹角,就是分别在a,b上取 ,求: 的问题.

6、利用向量求距离就是转化成求向量的模问题: .

7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.

首先该图形能建坐标系

如果能建

则先要会求面的法向量

求面的法向量的方法是 1。尽量在土中找到垂直与面的向量

2。如果找不到,那么就设n=(x,y,z)

然后因为法向量垂直于面

所以n垂直于面内两相交直线

可列出两个方程

两个方程,三个未知数

然后根据计算方便

取z(或x或y)等于一个数

然后就求出面的一个法向量了

会求法向量后

1。二面角的求法就是求出两个面的法向量

可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积

如过在两面的.同一边可以看到两向量的箭头或箭尾相交

那么二面角就是上面求的两法向量的夹角的补角

如果只能看到其中一个的箭头和另一个的箭尾相交

那么上面两向量的夹角就是所求

2。点到平面的距离就是求出该面的法向量

然后在平面上任取一点(除平面外那点在平面内的射影)

求出平面外那点和你所取的那点所构成的向量记为n1

7.八上几何证明题解析 篇七

1. 用解析法证明与动点相关的定值问题

建立恰当的直角坐标系,将命题中涉及的量用动点坐标表示,经过运算总可以得到定值。

例1.在△ABC中,AB=AC=4, P为BC上的任一点,求证:AP2+BP·PC=16。

思路:命题结论中的三条线段均与动点P相关,用动点P的坐标表示AP、BP及PC,命题可证。

证明:以BC所在直线为x轴,等腰△ABC的对称轴为y轴,建立平面直角坐标系(如图1)。

设动点P的坐标为(x, 0),点B、C的坐标为(-a, 0)、(a, 0) (|x|≤a, a>0) , 则A点的坐标为 (0,

例2.M是以AB为直径之圆上不同于A、B的任一点,C是直径AB上的定点,过M作与CM垂直的直线交过A、B之切线于D、E,求证:AD、BE之积为定值。

思路:此命题中有垂直关系,利用它将点D、E表示为动点M的坐标,命题可证。

证明:以圆直径AB所在直线为y轴,圆心为原点建立平面直角坐标系(如图2)。

设圆的半径为R,则圆的方程为x2+y2=R2, 点A、B的坐标为 (0, -R) 、 (0, R) , 令M点坐标为 (x, y) , E、D点坐标为 (x1, R) 、 (x2, -R) , C点坐标为 (0, -c) (R>0, c>0) 。

由E、M、D三点共线, 有

例3.若C、D是线段AB的三等分点,以CD为直径作圆,P为圆上异于C、D的任一点,求证:则tan∠APC·tan∠BPD为定值。

思路:此命题的结论是两角正切值之积为定值,涉及两对直线的夹角,可以用平面解析几何求两直线夹角的计算公式。只需用动点P的坐标表示过动点的四直线PA、PB、PC、PD的斜率,命题可证。

证明:以AB所在直线为x轴,AB中点为原点建立平面直角坐标系(如图3)。

设以CD为直径的圆半径为R,则圆方程为x2+y2=R2, A、B、C、D的坐标分别为(-3R, 0)、(3R, 0)、(-R, 0)、(R, 0)。又设动点P的坐标为 (x, y) , 则

例4.两圆内切于A,在大圆上任取一点P引小圆的切线PQ,求证:不论P的位置如何,PA∶PQ为定值。

思路:以两圆连心线所在直线为x轴,两圆切点为原点,建立平面直角坐标系。动点P、Q分别在两圆上,且PQ是小圆的切线,用其与小圆半径垂直关系,即可将两动点坐标相联系,命题可证。

证明:以两圆连心线OO′所在直线为x轴,两圆切点A为原点,建立平面直角坐标系(如图4)。

设大圆半径为R,小圆半径为r,则两圆方程分别为(x+R) 2+y2=R2, (x′+r) 2+y′2=r2,可令动点P、Q的坐标分别为(x, y)及(x′,y′),连结QO′,由于PQ是小圆的切线,则有PQ⊥QO′。

2. 用解析法证明含有垂直关系的与动点相关的几何命题

从与动点相关的定值问题的证明中我们可以看到,含有垂直关系的命题,用解析法比较容易找到证明思路。

例5.设P为正方形ABCD边BC上任一点,过P引AP的垂线交∠C的外角平分线于Q,求证:AP=PQ。

思路:利用AP与PQ的垂直关系,用动点P的坐标表示AP及PQ,命题可证。

证明:以正方形ABCD的邻边BC、AB所在直线为坐标轴,建立平面直角坐标系(如图5)。

设正方形的边长为a,则A、B、C、D的坐标分别为(0, a)、(0, 0)、(a, 0)、(a, a)。又设动点P、Q的坐标分别为 (x, 0) 、 (a+y, y) 。

由AP⊥PQ, 有整理得y=x。

于是点Q的坐标为(a+x, x)。

例6.已知M是Rt△ABC的斜边之中点,动点P、Q分别在BA、CA上,且满足PM⊥QM,求证:PQ2=PB2+QC2。

思路:此命题中有两个动点,用垂直关系把两动点P与Q的坐标联系起来,命题可证。

证明:以Rt△ABC两条直角边所在直线为坐标轴,建立平面直角坐标系(如图6)。设点A的坐标为(0, 0),点B、C的坐标分别为(a, 0)、(0, b),则斜边BC中点M的坐标为。设动点P、Q的坐标分别为(x, 0)、(0, y)。 (a2, b2)

例7.P是正方形ABCD的边CD上的任一点,过D作AP的垂线分别交AP、BC于Q、R, O是正方形的中心,求证:OP⊥OR。

思路:与例6思路相同,此命题的两个动点为P、R,利用垂直关系将P、R的坐标相联系,命题可证。

证明:以正方形ABCD的中心为原点,平行于两双对边的直线为坐标轴,建立平面直角坐标系(如图7)。

设正方形的边长为2a, 则A、B、C、D的坐标分别为 (-a, -a) 、 (a, -a) 、 (a, a) 、 (-a, a) 。又设动点P、Q的坐标分别为 (x, a) 、 (a, y) 。

整理得y=-x。

故DP⊥OR。

例8.如图8,在正方形ABCD内任取一点E,连结AE、BE,在△ABE外分别以AE、BE为边作正方形AEMN和BFGE,连结NC、AF,求证:NC∥AF。

思路:根据正方形邻边的垂直关系,把动点E的坐标与N、F点的坐标联系起来,命题可证。

证明:连结ND、FC,以△ABE为中介,由欧氏几何易得△AND艿△BFC。

以正方形ABCD的邻边AB、BC所在直线为坐标轴,建立平面直角坐标系。

设正方形ABCD的边长为a,则A、B、C、D的坐标分别为(0, a)、(0, 0)、(a, 0)、(a, a)。又设动点E的坐标为(x, y), F点的坐标为(e,-f)。则N点坐标为(a-e, a+f)。

联立(1)、(2),解得e=y, f=x。

于是F点的坐标为(y,-x),

N点坐标为(a-y, a+x)。

故NC∥AF。

从以上各例可以看到,与动点相关的几何命题,只要建立适当的直角坐标系,用动点坐标表示相关的量,就很容易找到用解析法证明的思路,特别是含有垂直关系的命题,用解析法证明,往往可以收到奇效。因此我们可以形象地说,垂直关系是桥梁,动点坐标是纽带。

参考文献

[1]陈圣德.平面几何一题多证[M].福州:福建人民出版社, 1985.

[2]祝本初.平面几何证题手册[M].南宁:广西民族出版社, 1991.

[3]李长明, 周焕山.初等数学研究[M].北京:高等教育出版社, 1995.

8.初中数学几何证明题教学探讨 篇八

关键词:初中数学;几何证明题;提高质效

提及初中数学几何证明题,不少学生就头皮发麻,找不到思路,面对各种各样的图形和线条就犯晕,几乎束手无策,更不用说作出精确的辅助线了;有的学生则是风风火火地写了满满一张纸,仔细一看,逻辑混乱,不知所云;还有的学生步骤简单,跳跃幅度大,因果关系没有整理清晰,关键步骤没有写清楚便匆匆得到要证明的结论,多多少少有些滥竽充数的嫌疑,自然也就拿不到证明题的完整分数了。 对于数学教师来讲,初中几何证明题也是教学上的一大难点,似乎在教学中花了不少的力气,但还是有不少的学生对几何证明题的掌握程度无法令人满意,达不到新一轮课程改革的基本要求。 如何針对初中数学几何证明题的特点,调动学生的主观能动性,提高几何证明题的教学效果,我结合个人教学实际,谈几点粗浅看法。

一、尊重教材

苏教版初中数学几何教材中,有几个重点环节,如平行线、轴对称图形、中心对称图形、相似图形等,这些章节的知识几乎无一例外都有证明题可供考查。 与这些知识点相关的证明题,一般来说难度不小,对于刚刚接触几何知识的初中生来讲,是一个很大的挑战。 要抓好这部分证明题的教学,我认为首先就是要尊重教材。

教材是一切教学工作的根源。 教材中有很多经典的例题,这些例题几乎可以涵盖初中几何所有的知识点,可以说,把教材上的例题讲通讲透,学生能完全消化教材的例题,应该说学生就可以解决百分之八十的基本证明题。 现实状况下,有些几何教师对证明题的讲解存在认识的误区,认为没有什么值得仔细讲、反复讲的,尽快讲完直接进入课后练习。 这种教学方式是不科学的,也是不合理的,我认为教材上的例题,至少要到边到角地讲三遍,每一遍都有不同的任务,第一遍是让学生大致了解题目要求证明的结论和题目提供的条件;第二遍是让学生明白如何通过给定的条件和现有的定理逐步得到要证明的结论,第三遍则是让学生做好细节上的处理工作。

二、做好细节的规范书写

初中几何证明题有着严谨的格式要求,证明题的书写还需要思路明确、步骤清晰、过程精练,这样的证明过程才能得到更高的评价。 教学实际中,通常遇到学生证明步骤烦琐,证明格式不规范,箭头指来指去,看得头晕眼花,不少数学老师对此大为光火。 其实,更多的时候,我们要反思自己在教学中是否做得到位,做得细心。

有的数学教师对于证明题示例的细节上把握不够,他们认为只要我能把证明思路、关键的步骤给学生演示一下就够了,至于其他的地方,没有必要过于苛求。 比如在板书的过程中,有的为了赶进度,图简单省事,一些看似不重要的证明步骤一笔带过,有的书写不够规范,有的字迹过于潦草,黑板上箭头指来指去,如同一幅军事作战指挥图,学生看起来很累,也很容易产生歧义。

如果教师是这种教学心态,那么也无法搞好几何证明题教学工作的,首先几何证明题本身就是一个严谨、严密的逻辑推理过程,没有做好细节自然就漏洞百出,所以,要充分认识到细节的重要性,为学生做好细节示范。 其次,学高为师,身正为范,这也是对教师教学工作的一个基本要求。 如果教学时间不是很充足,宁愿放弃示范也不能匆匆了事,一定要把握细节,注意火候,只有我们自己做得足够好,才能理直气壮对学生提要求。

三、抓好强化训练

初中几何证明题的教学,离不开强化训练。 这种强化训练既要训练学生的逻辑思维,还要训练学生的答题规范性。 比如,在三角形、多边形和圆这些章节的几何证明题中,有不少的题目要求学生作辅助线,不然难以解答。

要能准确作出辅助线,并熟练地运用各种定理来证明几何题,就需要平时进行一定量的强化训练。 这种强化训练一定不能走入了题海的误区,训练的题目最好是由老师提前把关,量不能太大、太复杂让学生产生畏难的心理,也不能过于简单,我认为以书本上的例题为参考,适当提高点难度为宜。 比如,我们可以在一堂课专门训练如何作辅助线,只要作出了辅助线,我们不要求学生完完整整地书写出整个证明过程,但要注意作出辅助线后续的工作,防止学生误打误撞,只要求他们说出证明的思路就可以进入下一题了。

通过一定量的题目进行强化训练,学生面对各种看似复杂的图形问题,能凭着直觉作出精确的辅助线,作出了辅助线之后解题的思路也就渐渐呈现出来,能较大幅度提高证明题的解题效率。

总而言之,初中数学几何证明题是整个初中数学教学的一大难点,作为数学教师要抓好教材例题的讲解,教学上遇到困难及时带领学生回归教材,多多少少能获得启发和提示。 同时也要端正教学心态,在板书和示范上尽量做细做实,切忌一笔带过,草草了事。最后要以一定量的题目及时强化训练,帮助学生牢固掌握知识点和定理的运用,这样才能提高几何证明题的教学质效。

9.几何证明题解题口诀 篇九

(作者:河南省唐河县刘军义)

几何做题很容易,证明过程写详细。数学原理巧运用,前后贯通有条理!题目信息不放过,必与结果有联系。学科符号用恰当,统一规范又适宜: 因为所以单点对,大小符号尖相抵; 图形符号缩字同,角线名称字母替。证理恰切书规范,美观整洁又得体!解释:

1、题目信息:指题目中给的证明条件。

2、结果:指要证明的内容。

3、因为所以单点对:指“∵”和“∴”竖写时情况。

4、尖相抵:指“>”和“<”横写时的情况。

5、图形符号缩字同:指“□”“◇”“△”等代替图形名称时占一个汉字的位置。

10.初一几何证明题答案 篇十

2已知AC平分角BAD,CE垂直AB于E,CF垂直AD于F,且BC=CD

(1)求证:△BCE全等△DCF

3.如图所示,过三角形ABC的顶点A分别作两底角角B和角C的平分线的垂线,AD垂直于BD于D,AE垂直于CE于E,求证:ED||BC.4.已知,如图,pB、pC分别是△ABC的外角平分线,且相交于点p。

求证:点p在∠A的平分线上。

回答人的补充2010-07-1900:101.在三角形ABC中,角ABC为60度,AD、CE分别平分角BAC角ACB,试猜想,AC、AE、CD有怎么样的数量关系

2.把等边三角形每边三等分,经其向外长出一个边长为原来三分之一的小等边三角形,称为一次生长,如生长三次,得到的多边形面积是原三角形面积的几倍

求证:同一三角形的重心、垂心、三条边的中垂线的交点三点共线。(这条线叫欧拉线)求证:同一三角形的三边的中点、三垂线的垂足、各顶点到垂心的线段的中点这9点共圆。~~(这个圆叫九点圆)

3.证明:对于任意三角形,一定存在两边a、b,满足a比b大于等于1,小于2分之根5加

14.已知△ABC的三条高交于垂心O,其中AB=a,AC=b,∠BAC=α。请用只含a、b、α三个字母的式子表示AO的长(三个字母不一定全部用完,但一定不能用其它字母)。

5.设所求直线为y=kx+b(k,b为常数.k不等于0).则其必过x-y+2=0与x+2y-1=0的交点(-1,1).所以b=k+1,即所求直线为y=kx+k+1(1)过直线x-y+2=0与Y轴的交点(0,2)且垂直于x-y+2=0的直线为y=-x+2(2).直线(2)与直线(1)的交点为A,直线(2)与直线x+2y-1=0的交点为B,则AB的中点为(0,2),由线段中点公式可求k.6.在三角形ABC中,角ABC=60,点p是三角ABC内的一点,使得角ApB=角BpC=角CpA,且pA=8pC=6则pB=2p是矩形ABCD内一点,pA=3pB=4pC=5则pD=3三角形ABC是等腰直角三角形,角C=90O是三角形内一点,O点到三角形各边的距离都等于1,将三角形ABC饶点O顺时针旋转45度得三角形A1B1C1两三角形的公共部分为多边形KLMNpQ,1)证明:三角形AKL三角形BMN三角形CpQ都是等腰直角三角形2)求三角形ABC与三角形A1B1C1公共部分的面积。

已知三角形ABC,a,b,c分别为三边.求证:三角形三边的平方和大于等于16倍的根号3(即:a2+b2+c2大于等于16倍的根号3)

初一几何单元练习题

一.选择题

1.如果α和β是同旁内角,且α=55°,则β等于()

(A)55°(B)125°(C)55°或125°(D)无法确定

2.如图19-2-(2)

AB‖CD若∠2是∠1的2倍,则∠2等于()

(A)60°(B)90°(C)120°(D)150

3.如图19-2-(3)

∠1+∠2=180°,∠3=110°,则∠4度数()

(A)等于∠1(B)110°

(C)70°(D)不能确定

4.如图19-2-(3)

∠1+∠2=180°,∠3=110°,则∠1的度数是()

(A)70°(B)110°

(C)180°-∠2(D)以上都不对

5.如图19-2(5),已知∠1=∠2,若要使∠3=∠4,则需()

(A)∠1=∠2(B)∠2=∠

3(C)∠1=∠4(D)AB‖CD

6.如图19-2-(6),AB‖CD,∠1=∠B,∠2=∠D,则∠BED为()

(A)锐角(B)直角

(C)钝角(D)无法确定

7.若两个角的一边在同一条直线上,另一边相互平行,那么这两个角的关系是()

(A)相等(B)互补(C)相等且互补(D)相等或互补

8.如图19-2-(8)AB‖CD,∠α=()

(A)50°(B)80°(C)85°

答案:1.D2.C3.C4.C5.D6.B7.D8.B

初一几何第二学期期末试题

1.两个角的和与这两角的差互补,则这两个角()

A.一个是锐角,一个是钝角B.都是钝角

C.都是直角D.必有一个直角

2.如果∠1和∠2是邻补角,且∠1>∠2,那么∠2的余角是()

3.下列说法正确的是()

A.一条直线的垂线有且只有一条

B.过射线端点与射线垂直的直线只有一条

C.如果两个角互为补角,那么这两个角一定是邻补角

D.过直线外和直线上的两个已知点,做已知直线的垂线

4.在同一平面内,两条不重合直线的位置关系可能有()

A.平行或相交B.垂直或平行

C.垂直或相交D.平行、垂直或相交

5.不相邻的两个直角,如果它们有一条公共边,那么另一边互相()

A.平行B.垂直

C.在同一条直线上D.或平行、或垂直、或在同一条直线上

答案:1.D2.C3.B4.A5.A回答人的补充2010-07-1900:211.如图所示,一只老鼠沿着长方形逃跑,一只花猫同时从A点朝另一个方向沿着长方形去捕捉,结果在距B点30cm的C点处捉住了老鼠。已知老鼠与猫的速度之比为11:14,求长方形的周长。设周长为X.则A到B的距离为X/2;X/2-30:X/2+30=11:14X=500cm如图,梯形ABCD中,AD平行BC,∠A=2∠C,AD=10cm,BC=25cm,求AB的长解:过点A作AB‖DE。∵AB‖DE,AD‖BC∴四边形ADEB是平信四边形∴AB=DE,AD=BE∵∠DEB是三角形DEC的外角∴∠DEB=∠CDE+∠C∵四边形ADEB是平信四边形∴∠A=∠DEB又∵∠A=2∠C,∠DEB=∠CDE+∠C∴∠CDE+∠C∴DE=CE∵AD=10,BC=25,AD=BE∴CE=15=DE=AB如图:等腰三角形ABCD中,AD平行BC,BD⊥DC,且∠1=∠2,梯形的周长为30CM,求AB、BC的长。因为等腰梯形ABCD,所以角ABC=角C,AB=CD,AD//BC所以角ADB=角2,又角1=角2,所以角1=角2=角ADB,而角ABC=角C=角1+角2且角2=角ADB所以角ADB+角C=90度,所以有角1+角2+角ADB=90度所以角2=30度因此BC=2CD=2AB所以周长为5AB=30所以AB=6,BC=12回答人的补充2010-07-0311:25如图:正方形ABCD的边长为4,G、F分别在DC、CB边上,DG=GC=2,CF=1.求证:∠1=∠2(要两种解法提示一种思路:连接并延长FG交AD的延长线于K)

1.连接并延长FG交AD的延长线于K∠KGD=∠FGC∠GDK=∠GCFBG=CG△CGF≌△DGKGF=GKAB=4BF=3AF=5AB=4+1=5AB=AFAG=AG△AGF≌△AGK∠1=∠

22.延长AC交BC延长线与E∠ADG=∠ECG∠AGD=∠EGCDG=GC△ADG≌△EGF∠1=∠EAD=CEAF=5EF=1+4=5∠2=∠E所以∠1=∠2如图,四边形ABCD是平行四边形,BE平行DF,分别交AC于E、F连接ED、BF求证∠1=∠2

答案:证三角形BFE全等三角形DEF。因为FE=EF,角BEF=90度=角DFE,DF=BE(全等三角形的对应高相等)。所以三角形BFE全等三角形DEF。所以∠1等于∠2(全等三角形对应角相等)

就给这么多吧~~N累~!回答人的补充2010-07-1900:341已知ΔABC,AD是BC边上的中线。E在AB边上,ED平分∠ADB。F在AC边上,FD平分∠ADC。求证:BE+CF>EF。

2已知ΔABC,BD是AC边上的高,CE是AB边上的高。F在BD上,BF=AC。G在CE延长线上,CG=AB。求证:AG=AF,AG⊥AF。

3已知ΔABC,AD是BC边上的高,AD=BD,CE是AB边上的高。AD交CE于H,连接BH。求证:BH=AC,BH⊥AC。

4已知ΔABC,AD是BC边上的中线,AB=2,AC=4,求AD的取值范围。

5已知ΔABC,AB>AC,AD是角平分线,p是AD上任意一点。求证:AB-AC>pB-pC。

6已知ΔABC,AB>AC,AE是外角平分线,p是AE上任意一点。求证:pB+pC>AB+AC。

7已知ΔABC,AB>AC,AD是角平分线。求证:BD>DC。

8已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形,AC=AE。连接CD,BE。求证:CD=BE,CD⊥BE。

9已知ΔABC,D是AB中点,E是AC中点,连接DE。求证:DE‖BC,2DE=BC。

10已知ΔABC是直角三角形,AB=AC。过A作直线AN,BD⊥AN于D,CE⊥AN于E。求证:DE=BD-CE。

等形2

1已知四边形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC边上,BE=CD。AE交BD于F。求证:AE⊥BD。

2已知ΔABC,AB>AC,BD是AC边上的中线,CE⊥BD于E,AF⊥BD延长线于F。求证:BE+BF=2BD。

3已知四边形ABCD,AB‖CD,E在BC上,AE平分∠BAD,DE平分∠ADC,若AB=2,CD=3,求AD。

4已知ΔABC是直角三角形,AC=BC,BE是角平分线,AF⊥BE延长线于F。求证:BE=2AF。

5已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖AB交BC于G。求证:CD=BG。

6已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖BC交AB于G。求证:AC=AG。

7已知四边形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。

8已知ΔABC,AC=BC,CD是角平分线,M为CD上一点,AM交BC于E,BM交AC于F。求证:ΔCME≌ΔCMF,AE=BF。

9已知ΔABC,AC=2AB,∠A=2∠C,求证:AB⊥BC。

10已知ΔABC,∠B=60°。AD,CE是角平分线,求证:AE+CD=AC

全等形4

1已知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形,AD=AE,连接CD,BE,M是BE中点,求证:AM⊥CD。

2已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。

3已知∠AOB,p为角平分线上一点,pC⊥OA于C,∠OAp+∠OBp=180°,求证:AO+BO=2CO。

4已知ΔABC是直角三角形,AB=AC,M是AC中点,AD⊥BM于D,延长AD交BC于E,连接EM,求证:∠AMB=∠EMC。

5已知ΔABC,AD是角平分线,DE⊥AB于E,DF⊥AC于F,求证:AD⊥EF。

6已知ΔABC,∠B=90°,AD是角平分线,DE⊥AC于E,F在AB上,BF=CE,求证:DF=DC。

7已知ΔABC,∠A与∠C的外角平分线交于p,连接pB,求证:pB平分∠B。

8已知ΔABC,到三边AB,BC,CA的距离相等的点有几个?

9已知四边形ABCD,AD‖BC,AD⊥DC,E为CD中点,连接AE,AE平分∠BAD,求证:AD+BC=AB。

11.一道几何证明题的思路剖析 篇十一

关键词:思路剖析;一题多解;思维突破;通性通法

对试题的研究是教师在教学和复习中经常做的一件事,通过研究把蕴含其中的数学思想方法揭露出来,挖掘出问题的本质属性.这样可以提高学生的空间想象、逻辑思维能力,分析和解决问题的思维技能,优化数学的思维品质,而且还可以培养学生探索创新的能力.下面,笔者通过实例进行探讨.

三、解题反思

(一)关注解题通法 增强学生的解题能力

优秀的几何题一般存在多种解法,而辅助线通常是解决问题的桥梁.巧妙的辅助线常能“柳暗花明又一村”,与标准答案不同的上述几种解法,其巧妙之处在于添加了辅助线,辅助线使未知与已知有了更紧密的联系,无须通过证明3次相似,证明过程大为简洁,体现了数学方法的多样性.同时也从侧面说明这是一道难得的好题,是训练学生数学思维的好素材.由此可见,通过一题多解,可以加深和巩固学生所学知识,充分运用学过的知识,从不同的角度思考问题,采用多种方法解决问题,这有利于学生加深理解各部分知识横向和纵向的内在联系,掌握各部分知识的转化关系,从而达到培养思维广阔性的目的.

(二)重视学会解题 拓展学生的思维空间

在解题教学中,题目是载体,解题是过程,方法和规律的揭示、策略和思想的形成是目的,因此,解题教学切忌就题论题,片面追求容量,忽视教学功能的发掘与开发.引导学生学会解题层面的回顾与反思:如解题中用到了哪些知识?解题中用到了哪些方法?这些知识和方法是怎样联系起来的?自己是怎么想到它们的?困难在哪里?关键是什么?遇到什么障碍?后来是怎么解决的?是否还有别的解决方法、更一般的方法或更特殊的方法、沟通其他学科的方法、更简单的方法?这些方法体现了什么样的数学思想?调动这些知识和方法体现了什么样的解题策略?

(三)关注模型思想 强化学生的识模能力

12.解析几何综合运用能力题分类例析 篇十二

解析几何综合运用能力题是历年来高考热点题型之一, 这类题型的特点是条件多、知识点多、设问多, 要求考生善于捕捉关键信息来探明题意、思路, 善于将问题归结为某类熟悉的代数或几何问题来解决, 善于抓住疑难设问进行重点突破.本文按解析几何与代数各内容的综合以及解析几何与平面向量及平面几何知识的综合运用, 结合实例分类剖析.

一、 解析几何与函数的综合运用

解析几何与函数的综合运用主要体现在运用函数的思想解题.如建立目标函数, 求函数的定义域、值域, 求函数的最大值、最小值, 函数单调性等性质的利用等.

例1 (1992年上海高考题) 已知双曲线C: (1-a2) ·x2+a2y2-a2=0 (参数a>0) , 若C的上半支的顶点为A, 且与直线y=-x交于点P, 以A为焦点, M (0, m) 为顶点的开口向下的抛物线通过点P, 当C的一条渐近线的斜率在区间[32232]上变化时, 求直线PM斜率的最大值.

分析 点P的坐标可用a表示, 由抛物线过点P, 可得m, a的关系式.由PM的斜率k, 可得k, m, a的关系式, 因此k的最大值要由这两个关系式所产生的某函数求出, 在这个关系式中, 若k是自变量, 则需要求出定义域, 若k是函数, 则需要求出值域.

解 将双曲线的方程整理为y2-x2a2a2-1=1, 其渐近线的方程是y=±a2-1ax, 所以32a2-1a232, 得4≤a2≤9.双曲线与直线y=-x交于第二象限, x<0, y>0.解方程组

{ (1-a2) x2+y2-a2=0y=-x

{x=-ay=a.

令x=0, 代入双曲线C的方程得点A (0, 1) .因为M为 (0, m) , 所以抛物线的方程为x2=-4 (m-1) (y-m) .又因为P (-a, a) , 所以a2=-4 (m-1) (a-m) ①, 因为k=m-aa, 即m=ak+a代入①, 解得a=4k4k2+4k-12a324k4k2+4k-13, 得13-26k5-14, 所以k的最大值为5-14.

二、解析几何与不等式的综合运用

解析几何与不等式的综合运用主要体现在利用基本不等式求最值或者转化为解不等式等. (例略)

三、解析几何与方程的综合运用.

解析几何与方程的综合运用主要是指方程思想的运用, 其中包括用待定系数法确定方程中的系数求曲线方程, 以建立方程 (组) 研究曲线的问题.

例2 (1998年全国高考题) 直线l1和l2相交于点M, l1⊥l2, 点N∈l1, 以定点A、B为端点的曲线段C 上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形, |AΜ|=17, |AΝ|=3, 且|BN|=6, 建立适当的坐标系, 求曲线段C的方程.

解 以l1为x轴, MN的中垂线为y轴, 点O为原点, 建立的直角坐标系.依题意, 曲线段C是以N为焦点, 以l2为准线的抛物线的一段, 其中A, B分别为C的端点.设曲线段C的方程为y2=2px (p>0) , (xA≤x≤xB, y>0) , 其中xA, xB分别为A, B的横坐标, p=|MN|, 所以Μ (-p20) Ν (p20) , 由|AΜ|=17|AΝ|=3, 得 (xA+p2) 2+2pxA=17 (xA-p2) 2+2pxA=9, 解得xA=4p, 进而求得

{p=4, xA=1,

{p=2, xA=2.

因为△AMN为锐角三角形, 所以p2>xA, 故p=4, xA=1.由点B在曲线段C上, 得xB=|BΝ|-p2=4.综合以上得曲线段C的方程为y2=8x, (1≤x≤4, y>0) .

注 曲线的方程概念本身就包含其中未知数的取值范围, 解题时要注意这一点.

四、解析几何与平面向量知识的综合运用

解析几何与平面向量知识的综合运用, 实际上是利用向量的有关知识巧妙地解决解几问题, 这时向量作为一种工具使用;有时在试题中将向量加进平面图形中要求运用向量的相关知识加以解题. (例略)

五、解析几何与平面几何知识的综合运用.

所谓解析几何与平面几何知识的综合运用就是要善于挖掘几何图形内部的本质联系, 注意运用平面图形 (如圆与三角形等) 的有关几何性质加以求解.

例3 已知圆O:x2+y2=16, A (2, 0) , AB⊥AC, B, C在圆上, 求BC中点P的轨迹方程.

分析 △ABC为直角三角形且P为中点, 所以有AΡ=12BC, ΟΡBC, 在Rt△OPC中运用勾股定理即可求得P点的轨迹方程.

解 设P (x, y) 因为△ABC为Rt△, 所以AΡ=12BC.又因为OP⊥BC, 所以|ΟΡ|2+12|BC|2=|ΟC|2, 即|OP|2+|AP|2=r2.代入坐标得:x2+y2+ (x-2) 2+y2=16, 即x2+y2-2x-6=0.

上一篇:观看记录片《旗帜》心得下一篇:骨伤科一般护理常规