分数乘法(三) 教案教学设计(人教版六年级上册)(共10篇)
1.分数乘法(三) 教案教学设计(人教版六年级上册) 篇一
分数应用题
教学目标
抓住分数应用题的核心--倍数关系和等量对应,通过“一例多用”、“一题多变”,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力.
教学过程
一、引入
根据条件列出对应关系.
1.青砖的块数比红砖多
2.青砖的块数比红砖少
3.红砖的块数比青砖多
4.红砖的块数比青砖少
上面各题哪一个量是单位“1”的量,占几份?另一个量所对应的分率是什么,占几份?
二、展开
(一)将上列各条件补充一个共同的条件和问题,出示例1.
红砖2100块有青砖多少块?
1.学生独立解答;
2.大组交流;
3.列表归纳.
题号 1 2
对应
关系 红砖2100-5
青砖□-(5+2) 红砖2100-5
青砖□-(5-2)
解一 设青砖x块
设青砖x块
解二
题号 3 4
对应关系 青砖□-5
5
红砖2100-(5+2) 青砖□-5
5
红砖2100-(5-2)
解一 设青砖x块
设青砖x块
解二
(二)出示例2
电视机厂今年生产电视机3600台,____________________,去年生产多少台?
1.根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子.
(1)相当于去年的25%
(2)比去年少25%
(3)比去年多25%
(4)去年生产的是今年的25%
(5)去年比今年少25%
(6)去年比今年多25%
2.将应选择的条件填入下列各式后的括号内.
()
()
()
()
()
()
3.师生共同分析
(1)按照补充的条件,找相应的式子,如(1)相当于去年的25%.
分析:去年的生产量是单位1的量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:
去年的产量□--100
今年的产量3600--25
设去年生产x台,得到的式子:
在第六个式子的括号里填(1).
(2)按照式子找应补充的条件.
如:
分析:100份与3600台相对应,也就是今年的生产量3600台是单位“1”的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%.括号里应填(6).
三、巩固
(一)根据题意列式解答:
果园里有梨树168棵苹果树有多少棵?
(二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%.原来制造一
台机器要多少元?
(三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?
(四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?
教案点评
这节课所出现的分数两步应用题的四种类型,在通常情况下是在几节课中出现,采用“一例一类题”的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心--倍数关系和量率对应,采用了“一例多用”,“一题多变”的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。
2.分数乘法(三) 教案教学设计(人教版六年级上册) 篇二
三单元分数除法 单元目标:
1、理解并掌握分数除法的计算方法,会进行分数除法计算。
2、会解答已知一个数的几分之几是多少求这个数的实际问题。
3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
4、能运用比的知识解决有关的实际问题。单元重点:
一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。单元难点:
一个数除以分数的计算法则的推导。
1、分数除法
(1)分数除法的意义和整数除以分数
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地回顾整理,总结反思出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。教学重点:
使学生理解算理,正确回顾整理,总结反思、应用计算法则。教学难点:
使学生理解整数除以分数的算理。教学过程:
一、创设情境,生成问题
1、创设情境,生成问题整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × × × ×6 ×
二、探索交流,解决问题
1、教学例1(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)(2)学生把这道乘法应用题改编成两道除法应用题,并解答。A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
(3)将100克化成 千克,300克化成千克,得出三道分数乘、除法算式。×3=(千克)÷3=(千克)÷3=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28“做一做”
3、教学例2(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的操作得出每份是这张纸的几分之几。
平均分成2份,并通过(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、÷2= =,每份就是2个。
B、÷2=×=,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、练习
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
四、回顾整理,总结反思
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说? 教后反思:
(2)一个数除以分数 教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生回顾整理,总结反思出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。教学重点:
回顾整理,总结反思出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。教学过程:
一、创设情境,生成问题
1、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?(速度=路程÷时间)
2、计算下面,直接写出得数
×4 ×3 ×2 ×6 ÷4 ÷3 ÷2 ÷6
二、探索交流,解决问题
1、默读例3,理解题意,列出算式:2÷
2、探索整数除以分数的计算方法
÷
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2××3(1)综合整个计算过程:2÷=2×个分数的倒数。
×3=2×
2、小结出计算法则:从上面这个推算过程,我们发现——整数除以,分数等于用整数乘这
3、计算÷,探索分数除以分数的计算方法
(1)学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷=×=2(km)
(2)学生用自己的方法来验证结果是否正确。
4、回顾整理,总结反思计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、练习
1、P31“做一做”的第1、2题。
2、练习八第2、4题。教学追记:(3)分数混合运算 教学目标:
1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
2、通过练习,培养学生的计算能力及初步的逻辑思维能力。
3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。
4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。教学重点:确定运算顺序再进行计算。教学难点:明确混合运算的顺序。教学过程:
一、创设情境,生成问题
1、创设情境,生成问题整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。
2、说出下面各题的运算顺序。(1)428+63÷9―17×5(2)1.8+1.5÷4―3×0.4
(3)3.2÷[(1.6+0.7)×2.5](4)[7+(5.78—3.12)]×(41.2―39)
二、探索交流,解决问题
1、教学例4(1)学生读题,明确已知条件及问题,尝试说说自己的解题思路。(2)根据学生的回答,归纳出两种思路:
A、可以从条件出发思考,根据彩带长8m,每朵花用少朵花。
m 彩带,可以先算出一共做了多B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。(3)学生独立列出综合算式后,让他们说说运算顺序,再进行计算。
2、巩固练习:P34“做一做”
(1)学生独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。
(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。
三、练习
1、练习九第1题:前三题提倡学生选择统一成乘法的方法进行计算。
2、练习九第2-4题
(1)第2题:可以先求每层有多高,再求楼的楼板到地面的高度,但要注意引导学生意识到6楼楼板到地面的高度实际上只有5层楼的高度。
(2)第3题可引导学生形成两种思路:A、先求每小时录入了这篇论文的几分之几,再求8小时可录入这篇论文的几分之几;B、先求8小时是3小时的几倍,再求8小时录入几分之几。
(3)第4题同样有两种方法:A、可以先求一共能装多少袋,列式:240÷×;B、可以先求装完的有多少千克,综合算式是240×÷。
四、布置作业 练习九第5-9题。教学追记:
2、解决问题
(1)已知一个数的几分之几是多少求这个数的应用题 教学目标:
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:
弄清单位“1”的量,会分析题中的数量关系。教学:难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一、创设情境,生成问题
1、出示创设情境,生成问题题:
根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?
2、让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。
3、选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重×=体内水分的重量
4、指名口头列式计算。
二、探索交流,解决问题
1、教学例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×=体内水分的重量
(3)这道题与创设情境,生成问题题相比有什么相同点和不同点?(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)
(5)启发学生应用算术解来解答应用题。(根据数量关系式:小明的体重×=体内水分的重量,反过来,体内水分的重量÷=小明的体重)
2、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?
(1)启发学生找到分率句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)
爸爸: 小明:
爸爸的体重×=小明的体重
①方程解:解:设爸爸的体重是χ千克。②算术解: 35÷=75(千克)
χ=35 χ=35÷
χ=75
3、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、练习
1、练习十第1—3题。(先分析数量关系式,然后确定单位“1”,最后再进行解答。第二题注意引导学生发现250ml的鲜牛奶是多余条件)
2、练习十第6题(引导学生先求出单位“1”——爸爸妈妈两人的工资和1500+1000,再根据数量关系式进行计算)
四、回顾整理,总结反思
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。教学追记:
(2)稍复杂的分数除法应用题 教学目标:
1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。教学重点:
弄清单位“1”的量,会分析题中的数量关系。教学难点:分析题中的数量关系。教学过程:
一、创设情境,生成问题
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、探索交流,解决问题
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量(4)指名列出方程。解:设买来大米X千克。
x-x=15
2、教学例2(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式: 航模小组人数+美术小组比航模小组多的人数=美术小组人数(4)根据等量关系式解答问题。解:设航模小组有χ人。
χ+χ=25(1+)χ=25 χ=25÷χ=20
三、小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。教学追记:
3、比和比的应用(1)比的意义
教学目标:
1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。
2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。
教学重点:比与除法、分数的关系 教学难点:理解比的意义
教学过程:
一、创设情境,生成问题。
1. 某车间有男工人5人,女工人8人,男工人数是女工人数的几分之几?女工人数是男工人数的几倍?
2. 分数与除法有什么关系?
二、探索交流,解决问题。1. 教学比的意义。
(1)教学同类量的比。
A、2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。杨利伟展示的两面旗都是长15cm,宽10cm,怎样用算式表示它们的长和宽的关系?(引导学生说出:可以求长是宽的几倍? 或求红旗的宽是长的几分之几?)
B、这两个关系都是用什么方法来求的?(除法)
C、比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10,或宽和长的比是10比15。
D、不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。(2)教学不同类量的比。
A、“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(路程÷时间=速度,算式:42252÷90)
B、对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。
(3)归纳比的意义。
A、通过上面两个例子,你认为什么是比?(学生试说,教师回顾整理,总结反思:两个数相除,又叫做两个数的比。)
B、练习:判断,下面数量间的关系是表示两个数的比吗?
① 甲数是9,乙数是7,甲数和乙数的比是9比7;乙数和甲数的比是7比9。② 拖拉机45分耕了2公顷地,工作总量和工作时间的比是2比45。③ 足球比赛,甲队和乙队的比分是3比2。2. 教学比的写法、比的各部分名称。比的写法。
15比10 记作15∶10 10比15 记作10∶15 42252比90记作42252: 90 比的各部分名称。
A、学生自学课本,小组讨论概括知识点。B、小组汇报并举例:
“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如: ∶ 2=3÷2=
3.教学比与除法、分数的关系。
(1)比与除法的关系
A、观察上面的式子,比的前项相当于什么?(被除数),后项相当于什么?(除数)比值相当于什么?(商)。B、比的后项能不能是零?为什么?(比的后项不能是零。因为比的后项相当于除数,除数不能是0,所以比的后项也不能是0)
C、比值通常用分数表示,也可以用小数或整数表示。(2)比与分数的关系。
A、根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。)
a)两个数的比也可以写成分数的形式。例如15:10,可写成结合上面的讲解,板书下表: 除法 分数 比 被除数 分子 前项
÷(除号)
除数
商,读作15比10。
-(分数线)分母 :(比号)
后项
分数值 比值
三、巩固练习。1. 完成课本“做一做”。2. 练习十一第1、2题。
四、布置作业。
1. 课本练习十一的第3题。2. 补充:求出比值。
0.375∶0.875 比的基本性质 教学目的: ∶ 0.75∶ 2.6∶3.9
1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。
2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。
3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。教学重点:理解比的基本性质,掌握化简比的方法 教学难点:化简比与求比值0的不同 教学过程:
一、创设情境,生成问题。
1、什么叫做比?比的各部分名称是什么?
2、比与除法和分数有什么关系? 比 除法 分数 前项 被除数 分子
:(比号)÷(除号)
后项 除数
比值 商 分数值
-(分数线)分母
3、除法中的商不变规律是什么?举例:6÷8=(6×2)÷(8×2)=12÷16
4、分数的基本性质是什么?举例:
二、探索交流,解决问题
= =
1、猜测比的性质:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)
2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。6÷8=(6×2)÷(8×2)=12÷16 6:8=(6×2)∶(8×2)=12:16 6:8=(6÷2)∶(8÷2)=3:4 6÷8=(6÷2)÷(8÷2)=3÷4
3、小组派代表说明验证过程,其他同学补充说明。
4、正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
5、教学例1(1)出示例题:把下面各比化成最简单的整数比
15∶10 ∶ 0.75∶2(2)引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的)(3)指名学生说出自己化简的方法,全班评判。
三、练习
1、P46“做一做”
2、练习十一第2题(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”)
四、回顾整理,总结反思
今天我们学习了什么知识?比的基本性质可以应用在哪些方面? 教学追记:(3)比的应用
教学目标:
1、结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。
3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。教学重点:
进一步掌握按比例分配应用题的结构特点和解题思路。教学难点:
正确分析解答比例分配应用题。教学过程:
一、创设情境,生成问题。
1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)
二、探索交流,解决问题。
1、教学例2。(1)出示例2:
(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)
(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)① 稀释液平均分成的份数:1+4=5 12 ② 浓缩液的体积:500× =100(ml)
③ 水的体积:500× =400(ml)
答:稀释液100ml,水400ml。
(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)
2、补充练习
(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)(4)怎样分别算出各班应种的棵数?引导学生解答: ① 三个班的总人数:47+45+48=140(人)
② 一班应栽的棵数: 280× = 94(人)
③ 二班应栽的棵数: 280×= 90(人)
④ 三班应栽的棵数: 280×= 96(人)
答:一班栽树94棵,二班栽树90棵,三班栽树96棵。(5)学生进行检验。
(6)学生试做“做一做”中的第2题。
三、巩固练习。练习十二的第1、3题。
四、布置作业。
练习十二第2、4、5、6、7题。教学追记:
4、整理和创设情境,生成问题 整理创设情境,生成问题(1)创设情境,生成问题目标:
使学生进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。创设情境,生成问题重点:分数除法的计算方法,化简比。创设情境,生成问题难点:正确计算分数除法。
创设情境,生成问题过程:
一、创设情境,生成问题分数除法的意义和计算法则
1、这一章我们学习了分数除法的有关知识.请大家回忆一下分数除法有几种类型?
(1)分数除以整数,例如÷5;
(2)一个数除以分数,它又包括整数除以分数,例如20÷;和分数除以分数,例如
÷。
(3)做第52页“整理和创设情境,生成问题”的第2题。
2、分数除法的意义
(1)第52页“整理和创设情境,生成问题”的第1题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写的算式填写在书上)
(2)让学生说说是怎样题改写成两道分数除法算式的。
(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)
3、分数除法的计算法则
(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?(2)引导学生概括出分数除法的统一计算法则:除以一个数(0除外),等于乘这个数的倒数。
(3)完成P52“整理和创设情境,生成问题”第2题。(4)P53练习十三第2题。
二、创设情境,生成问题比的意义和基本性质
1、比的意义
(1)什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除以后项所得的商.)(2)以“3∶2”为例,让学生分别说出“比号”“前项”和“后项”。3∶2 =1.5 ┇ ┇ ┇ ┇
前 比 后 比
项 号 项值
(3)比和比值有什么区别和联系呢?(比值是一个数,是比的前项除以比的后项所得的商,它通常用分数表示,也可以用小数表示,有时还是整数。而比所表示的是两个数的关系,如3∶2,虽然也可以写成分数的形式(4)比和除法、分数的联系 除法 分数 比,但仍读作3比2。特别强调比的后项不能为0)
被除数 分子 前项
÷(除号)除数 商 分数值 比值
-(分数线)分母 :(比号)
后项
2、比的基本性质
(1)创设情境,生成问题概念及化简方法 ①比的基本性质是什么?
②应用比的基本性质,怎样对整数比进行化简? ③不是整数的比应该怎样化简?
(2)学生做P52“整理和创设情境,生成问题”第3题(指名学生说说自己是怎样想的)
三、课堂练习
1、练习十三的第1题(先让学生独立完成.订正时,要让学生说出判断正误的理由)
2、做练习十四的第2题.
3、做练习十四的第3题(学生独立完成.教师注意巡视,察看学生所用算法是否简便)
4、做练习十四的第7题. 整理复习(2)
教学目的:
使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数乘除法应用题,提高学生解答分数应用题的能力. 教学重点:正确解答分数乘除法应用题 教学难点:分数乘除法应用题的联系与区别 教学过程:
一、推理训练
1、男生占全班人数的,女生占全班人数的()。
2、一堆煤,用去了,还剩下()。
3、今年比去年增产
二、对比训练:
1、一步分数应用题,今年相当于去年的()。
① 张大爷养了200只鹅,500只鸭,鹅的只数与鸭的只数的几分之几?
② 张大爷养了200只鹅,鹅的只数是鸭的只数的,养了多少只鹅?
③ 张大爷养了200只鹅,鸭的只数是鹅的只数的,养了多少只鸭?
(1)比较相同点和不同点
引导学生进行比较,使学生更清楚地认识到,在结构上,这三道应用题都含有同样的数量关系,即:鹅的只数,鸭的只数, 鹅的只数是鸭的几分之几;不同的是已知和未知发生了变化。在解题思路上,都要弄清以谁作标准,正确判定把哪一种数量看作单位“1”;不同的是需要根据已知、未知的变化确定该用什么方法解答。
(2)比较完后,学生将三道题的解答过程写在练习本上。
2、出示题组: ① 上海到汉口的水路长1125千米,一艘轮船从上每开往汉口,已经行了3/5,离汉口还有多少千米?
② 一艘轮船从上海开往汉口,已经行了3/5,离汉口还有450千米,上海到汉口的水路长多少千米?
(1)学生自己画线段图,分析,解答。](2)对比:两题有什么异同?你是怎样分析的,如何区别的?
3、出示题组:
① 停车场有8辆大客车,小汽车的辆数比大客车多1/6,小汽车有多少辆? ② 停车场有8辆大客车,大客车的辆数比小汽车少1/7,小汽车有多少辆? ③ 停车场有21辆小汽车,大客车的辆数比小汽车少1/7,大客车有多少辆 ④ 停车场有21辆小汽车,小汽车的辆数比大客车多1/6,大客车有多少辆?(1)学生独立画线段图,分析,解答。](2)对比:
1、2两题有什么异同?
3、4两题呢?你是怎样分析的,如何区别的?(3)解答稍复杂的分数乘除法应用题有规律吗?规律是什么? 引导学生归纳出:
㈠ 分析“分率句”,判断单位“1”是哪个数量?
㈡ 画出线段图,找出“量”和“率”的对应关系。
㈢ 确定已知单位“1”用乘法,求单位“1”用除法或用方程解。
三、课堂练习:
1、第53页“整理和创设情境,生成问题”的第4题(根据题目的条件应该确定把谁看作单位“1”? 单位“1”已知还是未知?)
2、练习十三第4、5题,独立完成,集体订正。
四、作业:
3.分数乘法(三) 教案教学设计(人教版六年级上册) 篇三
一、教学内容:
课程标准实验教材第8~9页的分数乘整数,例1、例2及“做一做”。
二、学习目标:1、使学生理解分数乘整数的意义与整数乘法相同,掌握分数乘整数的计算法则。
2、使学生在掌握分数乘整数的计算法则的基础上,能够较熟练、正确地进行计算.
3、培养学生的合作探究意识及良好的逻辑思维能力。
三、教学重、难点:
教学重点:使学生在掌握分数乘整数的计算法则的基础上,能够较熟练、正确地进行计算.
教学难点:使学生弄清分数乘整数的算理。
四、教学准备:
教具准备:实物投影仪,多媒体课件,给每个小组准备一套大小完全一样的图形学具板,学生自己准备水彩笔。
教学过程: 关键词:
设计意图 教学过程 二次备课
一、复习导入
1、 5个12是多少?怎样列式?
2、++=
做第一题时,让学生说一说整数乘法的意义。做第二题时,让学生说一说这两道题有什么特点。
3、问题:两组意义相同,那第二组还可以怎样计算?
探究新知
1.出示例1主题图:人跑一步的距离相当于袋鼠跳一下的。人跑3步的距离是袋鼠跳一下的几分之几?
2.学生读题列式
(1)++
(2)×3
3.可以这样列式吗?为什么?
学生发表自己的想法,集体交流。
总结:求人跑3步的距离是袋鼠跳一下的几分之几,实际上是求3个是多少,所以用乘法计算。(教师结合线段图解释)
4.尝试:那×3该怎样计算呢?这就是我们今天要研究的分数乘整数.请同学们自己试着做做,有问题可以与同位商量一下。(揭示课题)
学生汇报:
(1)是2个,乘3后就得到6个,因此 ×3=×6=
(2)利用加法算乘法。
×3=++===
说明:中间的加法算式部分,可以省略不写。
5.通过这道题,你觉得分数乘整数该怎样计算?
学生总结:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
6.出示练习:
×4 ×3 ×6
学生独立练习板演黑板,集体订正,并说说自己是怎样做的?
出示最后一题的两种做法:
(1)×6= = =
(2)×6= =
乘得的积要化成最简分数,哪一种约分方法比较简单呢?
总结:在计算过程中能约分的先约分,使计算比较简单。
二练习:
1.计算
×8 ×3 ×2
学生独立练习,集体订正。
2.解决问题
出示第9页做一做的第2、3题:
先说说为什么用乘法,再列式计算。
3.课堂作业
练习二1、2题。
板书设计: 分数乘整数
×3=×6=
×3=++===
4.分数乘法(三) 教案教学设计(人教版六年级上册) 篇四
课题:《分数乘法的混合运算和简便运算》 NO.2-4
班级 姓名 小组 小组评价
学习目标:
1、掌握分数乘加、乘减混合运算的运算顺序。
2、通过独立思考、小组合作、展示质疑,在知识的梳理中理解整数乘法的运算定律推广到分数乘法中可使运算简便,在学习过程中提高灵活计算的能力和计算的熟练程度。
3、激情投入,阳光战示,全力以赴,挑战自我。
重点:理解整数乘法的运算定律在分数乘法中的运用。
难点:灵活运用运算性质和运算定律使计算简便。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够理解整数乘法的运算定律推广到分数乘法中可使运算简便,在学习过程中提高灵活计算的能力和计算的熟练程度。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本P14页
2、计算
9+11×5 2.8×1.5-0.5 ( 105-57) ×0.6
思考:分数乘法的混合运算顺序:新课标第一网
3、简便计算
78×99+78 1.25×45×8 3.75 ×75+3.75 ×25
二、合作探究:
1、计算:
小结:分数乘加、乘减混合运算的运算顺序同整数乘加、乘减混合运算顺序相同即:
2、比较大小:
思考:观察每组的两个算式,看看它们有什么关系?你有什么发现?
3、用简便方法计算下面各题,并说一说运用了什么定律?
小结:整数乘法的交换律、结合律、分配律,对于分数乘法同样适用。
三、学以致用:
1、想一想,填一填。
1)、 内符合条件的整数是 。
2)、一个算式里,如果有括号,要先算( ),再算( )。
3)、 × 11 × = × × 11;
× + 0.4 × =( + )× 。
4)、在 的算式里,先算( ),再算( ),最后算( )。xkb1.com
5)、五(1)班人数的 和五(2)班人数的 相等,( )班人数少。
6)、一根绳子长15米,用去了 多 米,还剩( )米。
2、看谁算得快。
3、比较大小。(在 里填上“>”、“<”或“=” )
4、列式计算。
1)、 的5倍与3的 的和是多少?
2)、 kg的 比它的 多多少?
3)、比12的 多8的数是多少?
5.分数乘法(三) 教案教学设计(人教版六年级上册) 篇五
教学目标:
1、通过练习,使学生进一步熟练掌握两位数乘两位数(进位)的笔算方法。
2、能解决用乘法计算的实际问题。
3、在练习中培养学生认真、仔细的学习态度。
教学重点:进一步掌握两位数两位数的进位笔算方法。
教学难点:提高笔算的正确率。
教学过程:
一、基本练习:
1、学生回顾上节课学习的内容。揭示课题:笔算乘法练习课
2、开火车进行口算练习:
40×2060×2080×40400×7012×30
12×4044×20230×270×311×400
3、笔算练习(进位与不进位的对比):
23×3133×3143×1211×25
23×3454×1339×2717×28
(1)学生笔算。
(2)请学生观察比较:上行的题目和下行的题目有什么异同?
(3)学生讨论交流:它们的计算方法是一样的,不同的是上行的题目计算时没有进位,而下一行的题目需要进位。
(4)说说笔算乘法要注意什么?
二、解决问题:
1、完成练习十六第3题(稍做修改):
我每天训练要骑75千米。这位自行车运动员今年2月份要骑多少千米?
(1)引导学生看图,获取信息。
(2)同桌互相说:把图上的意思完整的说一说。
(3)独立列出算式,并用竖式笔算。
(4)集体讲评。
2、生独立完成练习十五第4题、第8题。
学生独立思考,解决反馈。
在解决完第8题时,问:在解决这道题时,是不是所有的信息都用上?为什么“每套12张”用不上?这样的题目给了你什么启示?
三、综合练习:
1、
2、
3、
独立完成,板演校对
四、学习总结:
说说这节课有什么收获?笔算乘法要注意什么?
五、布置作业:《课堂作业本》第34页
板书设计:笔算乘法练习课
教学反思:通过本节课的练习,学生的笔算正确率有较大的提高,且书上的题目难度不大,都只是一步解决的问题,学生完成得也比较理想。
6.分数乘法(三) 教案教学设计(人教版六年级上册) 篇六
新知识点:
分数乘法
分数乘法 解决问题
倒数的认识
教学目标:
1、结合具体情境,使学生理解分数乘法的意义,引导学生充分利用已有的知识和经验,探索分数乘法的计算法则及分数连乘的计算方法,并能够熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答“求一个数的几分之几是多少”的简单实际问题,增强应用数学的意识。
4、通过组织学生进行观察比较、讨论交流、归纳概括等活动,理解倒数的意义,掌握求倒数的方法。
5、结合计算和解题过程,进一步培养学生仔细计算、认真检查和验算的良好习惯。
教学重点:
分数乘法的意义和计算法则。
教学难点:
1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、分数乘法计算法则的推导。
课时安排:
1、分数乘法………………………………………………………………5课时
2、解决问题………………………………………………………………4课时
3、倒数的认识……………………………………………………………1课时
4、整理和复习……………………………………………………………2课时
1、分数乘法
(1)分数乘整数
教学内容:
教材第8、9页的内容及练习二的第1、2题。
教学目标:www.xkb1.com
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:
使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
引导学生总结分数乘整数的计算法则。
教学过程:www.xkb1.com
一、导入
1、出示复习题。
(1)5个12是多少?
用加法算:12+12+12+12+12+12=60
用乘法算:12×5=60
整数乘法的意义:就是求几个相同加数的和的简便运算。
(2)计算:
+ + = + + =
同分母分数的加法计算法则:分子相加的和作分子,分母不变。
2、引出课题。
+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、教学实施
1、利用 + + 教学分数乘法。
(1)这道加法算式中,加数是多少?(都是 )
(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3)
(3) + + = ,那么 + + = ×3,所以 ×3=_______= 。同学们想想看, ×3= 计算过程是怎样的?谁能把它补充完整。
2、出示例1。
(1)理解句意:题干中的“相当于”就是“是”或“占”的意思,就是人跑一步的距离是袋鼠跳一下距离的 或占袋鼠跳一下距离的 。
(2)画出线段图,学生独立列式解答。
①.引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
②.引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?
(3)探究意义新课标第一网
3个 是多少,可以列成加法算式: + + = 。
将加法算式改写乘法算式: + + = ×3 =
从上式中可以看出: ×3表示3个 相加。
(4)小结:分数乘法的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。
4、练习:练习完成“做一做”第2题。
5、教学例2
(1)出示 ×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:
A、先约分再计算;
B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
老师强调:能约分的可以先约分再计算,这样比较简便,不易出错。
三、练习:
1.完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
2.“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)
四、作业:
做练习二第1、2、4题。
五、课堂小结:
7.分数乘法(三) 教案教学设计(人教版六年级上册) 篇七
本课教学的设计,是在建构主义理念指导下,结合学生具体实际情况进行的。从实施情况来看,整堂课学生情绪高涨、兴趣盎然,一改往日应用题教学的枯燥、抽象之面貌,而是借用学生已有的知识经验和生活实际,有效地理解了这一类百分数应用题的数量关系和实用价值。
百分数应用题属于分数应用题,基本内容也包括了三大类,一是求分率,二是求单位“1”的百分之几是多少,三是求单位“1”的量。这三大类的学习,一要让学生弄清每一类的数量关系以及三类之间的联系与区别,二要让学生运用所学知识解决生活中的一些实际问题,并体会到百分数在生活中的运用是十分广泛的。
8.分数乘法(三) 教案教学设计(人教版六年级上册) 篇八
1、学生经历发现整十、整百、整千数乘一位数的口算方法的全过程,体验两位数乘一位数的口算方法,掌握最合理的口算方法。
2、培养学生解决问题的能力、以及对知识的迁移、类推的能力。
3、 通过学生活动,使学生加深对乘法含义的理解,让学生知道生活中处处有乘法;激发学生热爱数学的情感,培养学生学习数学的兴趣。
教学重点:掌握口算乘法的算法
教学难点:理解口算乘法的算理
教学过程:
一、旧知铺垫,自主学习
同学们,今天这节数学课,我来学习多位数乘一位数的口算乘法。(板书课题:口算乘法)
老师来了两位老朋友一起上课,请看(出示喜洋洋,沸羊羊)他们给我们打招呼了:大家好,我们一起努力哦!他们要带大家去一个好玩的地方,不过在去之前,我们必须闯过二道关卡,有信心迎接挑战吗?好,我们就来智力闯关(课件演示)1、第1关 快速抢答3×5 2×6 8×9 9×5 7×4 6×7.太棒了,第一关你们顺利过关,来看第二关。2、第二关 口答(1)3个十是( )。 (2)6个百是( )。(3)5个十和8个一是( )。(4)4个百合6个十是。(5)18里有( )个十和( )个一。(6)26是由( )个十和( )个一组成。
同学们,你们依靠智慧,勇敢的闯过二关,喜洋洋表扬你们,现在跟他一起玩吧!
二、学法引入,合作探究(出示课件:儿童乐园)
1 .出示课件:游乐园
仔细观察,从图中你获得了哪些数学信息?
生答:(价格表中的信息)一生能全部说全就全部说,说不全就其余生补充。
师:你能根据这些信息提出用乘法计算的问题吗?
2. 学生提问,如果简单的问题可以当场解决,如果有人提出了例题中的问题就出示例题。
3.课件出示例题: 坐碰碰车每人20元,3人需要多少钱?
学生列式解答:20*3=60(元) (教师板书列式)
你是怎样算出结果得60呢?可以动用学具摆一摆。独立完成。
选学生汇报:20+20+20=60, 2个十乘3是6个十,就是60,2*3=6,6后面添一个0. …..
师:真厉害,如果20换成200,呢?你会算吗?学生思考举手回答并要求说出算法。
三.展示梳理,点拨提升
1. 师:大家玩了碰碰车,喜洋洋带着大家玩过山车,看看遇到什么问题了?(课件出示例2)
例2.坐过山车每人12元,3人需要多少钱? 学生读题1遍。
2.学生列式(只列式不计算)
3.小组合作,将你们的计算方法下来,看看哪组的计算方法多。(小组合作)
4.小组汇报:我们组想了( )种方法,第一种是( ),第二种是( )。……
5.梳理方法:课件出示:方法1:12+12+12=36,方法2:10*3=30,2*3=6,30+6=36
强调:12里面有1个十,2个一
6.考考大家,有没有掌握这些计算方法。
练一练:12*4= 23*2= 32*3= 要求说出计算过程。
四.巩固反馈,拓展创新
1.师:喜洋洋看大家这么厉害,邀请我们一起玩游戏。开火车游戏
课件出示1.开火车
2.你发现用一位数乘整十、整百、整千的数怎样计算简便?
3.游戏玩玩了,喜洋洋说我们一起去购物. 课件出示2算一算购货单的价钱
4. 喜洋洋真开心,大家帮他完成了购物,老师这有个难题请你们帮帮我,愿意吗?出示第3题。
五:课堂小结 小朋友们,在今天的学习中,你有什么收获吗?
板书: 口算乘法
20*3=60(元)
2个十乘3是6个十,就是60
12*3=36(元)
9.分数乘法(三) 教案教学设计(人教版六年级上册) 篇九
口算乘法
教学目标:
1、使学生在理解的基础上,掌握整数乘法的口算方法。培养学生类推迁移的能 力和口算的能力,过程与方法:培养学生养成认真计口算的良好学习习惯。
2、使学生感受到数学源于生活,培养学生积极思考的习惯情感、态度和价值观,使学生经历整数乘法口算方法的形成过程,体验解决问题策略的多样性。能力目标: 通过学生活动,体验数学学习方法,培养学生探索新知,自主学习的能力,让学生在合作中交流、学习,互动。重点:掌握整数乘法的口算方法
难点:培养学生养成认真思考的良好学习习惯.教学过程: 学前准备
口算练习。
30×3 20×6 20×4 13×3 2×4 200×4 9×50 120×2 40×7 2×3 23×2 400×2 让学生任选两题说说口算的方法。
[设计意图]为下面知识的学习做好铺垫。
(一)创设情景,提出问题
1、你们想知道一些交通工具的运行速度吗?(出示六种交通工具的时速的图片)(学生看图片)
2、你还知道其他交通工具的速度吗?(汇报查找的一些交通工具的运行
速度)分小组讨论交流。
[设计意图]使学生在熟悉的情境中,激发探究的欲望,为学习后面的数量关系作准备)
(二)合作交流,探究新知
1、出示例1
人骑自行车1小时约行16千米。特快列车1小时约行160千米。1)人骑自行车3小时可以行多少千米?
提问:计算这道题时怎样想?怎样列式?如何计算? 生列式16×3=(小组讨论口算方法,汇报)小组交流讨论,小组汇报:
方法1:想10×3=60,3×6=18,30+18=48,所以 16×3=48 方法二:16 × 3--------
问:30小时行多少千米?(学生独立完成,汇报交流口算方法:
第一种:16×30先用16×3=48,再在积的末尾填写一个0得480 所以
10×30+6×30=480
第二种160×3想100×3=300,3×60=180,300+180=408,所以160×3=480 第三种因为16×3=48,所以160×3=480)独立完成后汇报 练一练:
18×4= 24×3= 25×2= 14×6=
(学生独立口算,说一说计算的过程)
(1)说说算式表示的意义。
(2)学生小组交流口算方法
(3)各组代表向全班汇报 本组的各种口算方法。(4)教师对学生的口算方法给予归纳总结。
[设计意图]老师点评每一种方法,强化学生对口算方法和口算过程的了解,同时用点评的方式给学生以表扬、鼓励,增强学生主动探索数学知识的信心。
2、特快列车3小时可以行多少千米?怎么列式
提问:计算这道题时怎样想?在小组内交流一下。组织学生汇报交流。
比较两种方法,你认为哪种方法简便? 练习:130×5= 2×380= 150×6= 7×13=460×2= 口算乘法的方法是什么? 3、汇报口算方法:你怎么口算?
4、小组讨论:寻找较简便的口算方法。师生归纳总结口算方法
一位数与几百几十相乘,先乘0前面的数,再在乘积的后面添上一个0 [设计意图]使学生掌握整数乘法口算的方法,体验解决问题策略的多样性)
(三)巩固新知:
指导学生完成“做一做”。
让学生先独立完成“做一做”的前六道题,完成后集体订正,每道题各 选几名同学说一说他们的口算方法。
教师引导学生贯彻思考这两道题和我们前面学 过的题有什么区别? 引导学习探究计算方法,根据前面学习的经验,你能说一说你想怎么计算它们的结果吗?
[设计意图]通过前面的探究学习,突出学生的计算方法逐渐简便,学生从中体验到了学习的乐趣。
(四)巩固练习:
1、练习六第1题,将得数写在树叶旁边。
2、、练习六第1题和第2题 应用乘法口算解决实际问题。
3、练习六第4题口算练习
[设计意图]通过练习,引导学生学会有序思考的方法能够把学到的知识进行及时的巩固复习。提高学生的口算能力。)
(五)、整体回顾、总结评价
谈话:这节课你学到了什么知识?你觉得你们组表现得怎么样?
[设计意图]通过自我总结和自我评价,能够及时发现自己收获和不足,以便于及时整理自己的学习思路,更快地掌握口算乘法的计算方法。
(六)、布置作业: 当堂测试A、B卷
课堂检测(A)
一、口算练习
35× 2= 19× 5= 250×3= 140× 6= 17× 5= 16× 5= 140×7= 230× 4=
二、智慧树
三、动脑筋
我们的问题是:杜鹃花大约有多少个品种? 课堂检测(B)练一练 × 3= 13 × 6= 25 × 6= 350 × 2= 120 × 4= 280 × 3= 算一算 你发现有什么规律
想一想 你还有别的方法吗?
课堂检测(A)答案
一、口算练习70、90、750、840、85、90、840、920
二、智慧树 34、930、70、96、720、720、90、72、780
三、动脑筋
17×40=680(个)答:大约有680个品种。课堂检测(B)答案(1)、练一练 54、78、150、700、480、840
(2)、算一算 你发现有什么规律 24、48、96、240、720、960 规律:一位数与几百几十相乘,先乘0前面的数,再在乘积的后面添上一个0(3)、想一想
10.分数乘法(三) 教案教学设计(人教版六年级上册) 篇十
联系电话13867568631电子信箱:jinjn126.com
一、设计思想
本节课是一节计算课,传统的计算教学是枯燥乏味的,为了打破传统的计算教学方法,突出新的教学理念,在教学时,我根据学生已有的生活经验,以湖塘的大香林桂花节为背景,让学生在生动具体的生活情境中理解、感受知识的发展过程,体验、经历多位数乘一位数(不进位)的计算过程,通过独立思考、合作交流,自主探索算法的多样化,并注意培养学生解决实际问题的能力。本节课的教学设计有这样几个特点:
1、从学生已有的生活经验入手,注意知识的迁移。
2、通过合作交流,突现学生的主体性,实现算法的多样化。
3、设计多种练习,培养学生的数学应用意识。
二、教材分析
两位数乘一位数不进位的乘法,是学生在掌握了整百、整十数乘一位数口算的基础上,探讨每一数位上的积都不满十的任意两、三位数乘一位数的计算方法,并引出乘法竖式的书写格式。通过计算使学生懂得任意两、三位数乘一位数,都是把这个数每一位上的数分别乘这个一位数,再把所得的积相加。这一内容是本单元的教学重点,因为它体现了多位数乘法的基本算理和算法,掌握了它,多位数乘法就可以在此基础上迁移、类推。而且两位数乘一位数的熟练程度还会影响到除数是两位数的除法试商的准确率和速度。因此,一定要让学生掌握好这部分知识。
三、学情分析
学生在学习本课之前,一般是不会列出乘法笔算竖式的,许多学生都会利用口算的方法来解决问题。笔算竖式是计算的通法,是学生今后进一步学习多位数乘法的基础。因此,教师应有意识地引导学生列出乘法竖式。刚开始用竖式计算的时候,有的学生可能会从高位算起,这时教师不必急于去纠正,这个问题可以留待以后学习进位乘法时再加以解决。
四、教学目标
1、使学生经历多位数乘一位数(不进位)的计算过程,体验计算方法的多样化。
2、初步学会乘法竖式的书写格式,了解竖式每一步计算的含义,理解并掌握其计算方法。
3、培养学生独立思考、合作交流的学习方法和积极的学习态度,同时让学生体会数学知识与现实生活的密切联系。
五、重点难点
重点:探索并掌握两位数乘一位数的笔算方法及乘法竖式书写的格式,并能正确计算。
难点:使学生学会乘法竖式的书写格式,理解并掌握其计算法则。
六、课前准备
教学挂图
七、教学过程
一、创设情境,提出问题
小朋友们,金秋十月,丹桂飘香,我们家乡美丽的大香林景区又迎来了一年一度的桂花节。十一长假,小明一家也来到了大香林,他们买了3张门票,每张30元。请问:一共要付多少钱?怎么解决这个问题?(30×3)为什么用乘法计算?(因为是求3个30)怎样计算?(复习整十数乘一位数的口算方法。)
师:景区内真是人山人海!入口处,3辆电动车正忙着把游客载往桂花林,(出示挂图)请小朋友仔细观察,说一说图上都告诉了我们什么?(有3辆电动车,每辆电动车上最多可以坐12名游客。)根据这些信息,你想提一个什么问题呢?(3辆车一共可以坐多少名游客?)板书问题。
二、自主探索,解决问题
1、先请小朋友估计一下,3辆车大约可以坐多少名游客?
2、师:如果我们要知道准确的人数,该怎么办呢?
怎样算一共可以坐多少人?(12×3)
为什么用乘法计算?(因为是求3个12是多少)
3、探讨交流
1)12×3等于几?你想怎样计算?写在草稿本上。
2)学生独立思考,请不同算法的学生板演。
3)学生在小组内讨论、交流算法。
4)请板演的学生给大家介绍自己的算法。
方法1用加法算:12+12+12=36
方法2口算:10×3=302×3=630+6=36
方法3:列竖式12
×3
36
4、数形结合,理解算理。
师指着竖式问:大家看懂了吗?6怎么来的?为什么写在个位上?表示什么?十位上的3怎么来?表示什么?
有这么多种算法,它们之间肯定是有联系的。这个6在第二种算法里表示什么?你能在图中把它圈出来吗?
出示: ○○○○○○○○○○○○
○○○○○○○○○○○○
○○○○○○○○○○○○
“3”你能圈出来吗?
5、强调竖式的写法,师生共同完成,师边讲解边板书。
12×3=36,在写竖式时,先写第一个因数12,再写乘号,然后写第二个因数3,注意3要写在哪儿?乘的时候,要先从个位乘起,用3和个位上的2相乘得几?6写在哪儿?表示什么?乘完没有?还要再用3乘十位上的1,得3。这个3表示什么?要写在什么位上?现在竖式算完没有?如果百位上还有数,还要怎么样?乘得的积要写在(百位上)。小朋友们请看,在乘法竖式里,12叫什么?3呢?最后乘得的结果36就是它们的(积)。竖式算完了,一定要记住在横式上写出得数。这道题的单位是什么?一起口答。
6、揭示课题:刚才我们在计算12×3等于几时,不但可以用口算的方法,而且还探讨了用竖式来计算,这就是我们今天新学的笔算乘法。
板书课题:笔算乘法(齐读课题)
三、反馈练习,巩固新知。
1、做一做
323123
×2×2×2
学生独立完成。
师:你发现这3道题最大的区别是什么?(第一个算式,第一个因数是1位数;第二个算式,第一个因数是2位数;第三个算式,第一个因数是3位数。)
这3道题之间有什么联系?(先乘个位,再乘十位,最后乘百位,这是笔算乘法的基本方法。)
2、小明一家乘着电瓶车来到了桂花林,他们看见路边放着许多花。每一边都放了342盆,两边共放多少盆?
你能列式解答吗?是怎样计算出结果的?和同桌说一说。
指名汇报。
3、小明一家去了钓鱼池钓鱼,小明和妈妈分别钓了14条鱼,爸爸钓了16条,一家人一共钓了多少条鱼?
4、小朋友真能干!现在老师要考考大家,难一点的题目会不会做?
□2□2□□
×3×□
□□98□□
师:看清题目中隐含的条件。第1题你会先解决哪一个数?接着填哪一位?还有不同填法吗?
师:第2题你会先填哪一位?为什么?
5、小明一家在大香林游玩了一圈,要回家了。小明想给阿姨家的2个妹妹带一件纪念品回去。妈妈给了小明50元钱,让小明自己挑选礼物。(出示图片:木挂件11元/个,竹水枪22元/支,风箱24元/只),小明会挑什么礼物?一共要花多少钱?还有钱多吗?多多少?
四、全课总结
这节课你有什么收获?
八、板书设计
笔算乘法
3辆车一共可以坐多少名游客?
12×3=36(名)
12……因数
×3……因数
36……积
九、问题探讨
1、教学中,教师是否能够充分放手,让学生独自经历探索多种算法和与他人交流的过程,享受成功的快乐?
2、学生是否真正懂得了乘法竖式中每一步计算的含义?
十、作业设计
1、先说一说计算顺序,再计算。
31122413112
×3×4×2×4
2、解决问题。
(1)黄花有32朵,红花的朵数是黄花的2倍。红花有多少朵?一共有花多少朵?(2)三年级有3个班,2个班都是42人,另一个班有45人。三年级一共有多少人?
3、你能写出多少两位数乘一位数和三位数乘一位数的不进位乘法算式?并计算出结果。比一比,看谁写得又快又多。写好后,同桌互相交流。
两位数乘一位数的不进位乘法:
三位数乘一位数的不进位乘法:
你还能写出多位数乘一位数的不进位乘法算式吗?
十一、镇街交流意见
【分数乘法(三) 教案教学设计(人教版六年级上册)】推荐阅读:
《分数乘法》数学教案设计06-19
分数乘法一教案09-07
分数乘法公开课教案10-11
分数乘法应用题教案08-18
参赛教案《分数乘法应用题》07-14
《分数乘法二》教学设计08-10
六年级分数乘法应用题10-30
小数乘法分数的教学设计08-29
小学六年级数学上学期《分数乘法》说课稿10-27