高斯求和问题奥数
1.高斯求和问题奥数 篇一
《等差数列求和》教学设计
【教学目标】:
1、通过学习,初步建立配对求和的逻辑推理,简便计算的能力。
2、培养学生的观察和思考的能力。
3、学习本课知识有助于养成全面地,由浅入深、由简到繁观察思考问题的良好习惯。【教学重点】
用配对求和的简便方法解决问题,推导等差数列的求和公式。【教学难点】
等差数列求和公式的推导。【教学过程】
一、激趣引入
老师:同学们,如果,我说的是如果。你们第一次来上课老师奖励你们没人一块钱,第二次奖励两块,第三次奖励三块,„„请问,到第10次课后,你们每人得到了多少钱?(学生在草稿纸上计算,老师板书;1+2+3+4+5+6+7+8+9+10)老师:你们有什么简便的方法计算出这个式子的结果吗? 学生:凑十法!老师:怎么凑?
学生:1+9,2+8,3+7,4+6。
老师:很好,凑十法也能够很快算出结果。不过,凑十法也有缺陷,你们看,用凑十法最后还剩下走不到伴的数。大家想想,还有什么办法计算?(学生思考,讨论。)老师:请同学来回答。
学生:第一个数和最后一个数相加,第二个数和倒数第二个数相加„„
老师:这位同学观察很仔细。1加上10等于11,2加上9等于11„„这里面十个数刚好分为了5组,每组的和都是11.。所以我们也可以这样来计算这个式子的和。(板书:
(小结:在这里,我们使用了一种简便的计算方法:配对求和。即先配对再求和。)
二、讲授新课
老师:如果,还是如果。老师爱心泛滥,继续奖励你们money。请问,第一百天后,你们每人得到多少钱呢?
(板书:例题一+ 2 + 3 + 4+ „ + 98 + 99 + 100)
老师:这个式子又该怎样计算呢?就用刚才老师教的配对求和的方法。谁和谁配对呢? 学生:1和100,2和99,3和98„„(副板书:
老师:总共有多少对呢? 学生:50对。
老师:没错,一百个数,两个数一对,可以分为100除以2等于50对。所以在这道题中,我们也可以这样计算。(板书:
老师:1+2+3+4+5+…+98+99+100。这是一个自然数列,它们有着这样的规律。从第二项起每一项与它前面一项的差都相等,这样的数列叫做等差数列。后项与前项的差叫该数列的公差。我们把数列的第一项叫首项,最后一项叫末项。
等差数列的求和,我们可以根据刚才的计算的两个式子总结出一道公式。大家说是什么? 学生:总和=(首项+ 末项)×项数÷2 板书:总和=(首项+ 末项)×项数÷2)
老师:使用这个公式要注意,首先要判断这个数列是不是等差数列。(怎么判段?)首项、末项和项数(项数怎么求?)下面我们看例题二。(板书:例题2 2+5+8+11+14+17+20)老师:这个式子能不能用公式进行求和? 学生:可以。
老师:好,请一个同学说一下他是怎么做的。学生A:2加20的和乘以7除以2.结果等于77.老师:非常好,现学现用。其他同学有什么问题吗。用些同学可能会有疑问,这里面只有七个数,不够分对啊,还剩下一个光棍呢?这个公式还能不能呢?大家说能不能? 学生:能!
老师:我们一起来验算一下。(副板书:
老师:两次计算的结果一样吧!说明这个公式是正确的。
老师:这个公式看似很简单,只要一套数字就行了。但是在实际应用中并没那么简单,请看例题三。
(学生读题:小红读一本长篇小说,第一天读了30页,从第二天起,每天读的页数都比前一天多4页,最后一天读了70页,刚好读完。问:这本小说共有多少页?)
老师:这道题求这本小说共有多少页。因为每天读“每天读的页数都比前一天多4页”,第一天30页,第二天34页,第三天38页„„最后一天看了70页。我们要求这本小说共有多少页,只要把每天看的页数加起来就行了。可是,我们要一个个加起来吗? 学生:不用。
老师:不用。小红每天看的页数构成了一个等差数列。我们可以用公式计算。大家看一下这个公式里还有什么不知道? 学生:项数。
老师:其实天数就是项数。看了多少天,就有多少项。那要怎么求项数呢?(副板书:
(学生观察并思考。)
学生:项数就等于70减去30的差除以4。老师:就这样了吗。学生:还要加上1.老师:很好。(板书:
(小结:在这里,我们来小结一下求项数的公式:项数=(末项-首项)÷公差+1)
老师:在这里,我改一下题目,把“最后一天读了70页”改为“第十一天刚好读完。问这本书共有多少页?怎么算呢。(学生思考讨论。)学生:还是用等差数列求和公式。老师:这个公式里面还有哪个量不知道? 学生:末项。老师:怎么求?(副板书:
(小结:在这里,我们来小结一下求末项的公式: 末项=首项+(项数-1)×公差)
三、完成课堂练习。
学生完成讲义上的课堂练习。
四、布置作业。
五、课后总结。等差数列相关公式: 总和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 末项=首项+(项数-1)×公差
六、板书设计(附后)
七、课后反思。