必修二圆的方程教案

2024-11-06

必修二圆的方程教案(通用3篇)

1.必修二圆的方程教案 篇一

直线的方程

一、教学目标(一)知识教学点

在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.

(二)能力训练点

通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.

(三)学科渗透点

通过直线方程的几种形式培养学生的美学意识.

二、教材分析

1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.

2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上. 的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.

三、活动设计

分析、启发、诱导、讲练结合.

四、教学过程(一)点斜式

已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?

设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得

注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程. 重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程.

这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式. 当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1.

当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

(二)斜截式

已知直线l在y轴上的截距为b,斜率为b,求直线的方程.

这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:

y-b=k(x-0)也就是

上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.

当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距.

(三)两点式

已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请同学们求直线l的方程.

当y1≠y2时,为了便于记忆,我们把方程改写成

请同学们给这个方程命名:这个方程是由直线上两点确定的,叫做直线的两点式. 对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码的规律完全一样.

(四)截距式

例1 已知直线l在x轴和y轴上的截距分别是a和b(a≠0,b≠0),求直线l的方程. 此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.

解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得

就是

学生也可能用先求斜率,然后用点斜式方程求得截距式.

引导学生给方程命名:这个方程是由直线在x轴和y轴上的截距确定的,叫做直线方程的截距式.

对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示.

(五)例题

例2 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程.

本例题要在引导学生灵活选用方程形式、简化运算上多下功夫. 解:直线AB的方程可由两点式得:

即 3x+8y+15=0 这就是直线AB的方程.

BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:

由斜截式得:

即 5x+3y-6=0. 这就是直线BC的方程. 由截距式方程得AC的方程是

即 2x+5y+10=0.

六、板书设计

2.椭圆的定义及标准方程教案 篇二

关键词:椭圆;标准方案

中图分类号:G632 文献标识码:B 文章编号:1002-7661(2014)13-365-01

一、教材分析

本节课是普通高中课程标准试验教科书选修2-1第二章《圆锥曲线与方程》中《椭圆》的第一节内容,主要学习椭圆的定义和标准方程。这一节课是在学完《直线和圆的方程》的基础上,将研究曲线的方法拓展到椭圆,又是继续学习椭圆的几何性质的基础;同时还为后面学习双曲线和抛物线作好准备,起到一个承上启下的重要作用。

二、教学目标

知识与技能:(课程标准)经历从具体情境中抽象出椭圆模型的过程,掌握它们的定义、标准方程。掌握椭圆标准方程的推导过程。过程与方法:培养学生观察、比较、分析、概括的能力;注重数形结合和待定系数法等数学思想方法的渗透,熟练掌握解决解析几何问题的方法——解析法。情感、态度与价值观:鼓励学生积极、主动的参与教学的整个过程,激发其求知的欲望;培养学生勇于探索、敢于创新的精神;体会运动变化、对立统一的思想。

三、教学重点、难点

重点:椭圆的定义和标准方程。

难点:(1)标准方程的推导。(2)椭圆定义中常数加以限制的原因。

四、课前准备

教师:课件、三角板、无弹性细绳。

学生:两颗图钉、一根无弹性细绳、一根粉笔、纸板。

五、教学过程

(一)温故知新

教学内容:复习求曲线方程的方法

教师:同学们,前面我们学习了曲线的方程的概念,什么叫做曲线的方程?求曲线方程有那些方法?

学生:思考,并回答问题。

设计意图:明示这节课所要学的内容与原来所学知识之间的内在联系,并为后面椭圆的标准方程的推导及用待定系数法求椭圆方程作好准备。

(二)创设情境

教学内容:神舟十号于2013年6月11日17时38分02秒成功发射。发射初始轨道:近地点约200公里、远地点约330公里的椭圆轨道。

教师:1、演示飞行船绕地球运行模拟图。2、设问:我们怎么能求出神舟十号飞行轨迹的方程呢?

学生:神州五号发射成功,学生鼓掌向英雄致意,认真观察图形一起思考。

设计意图:通过录像激发学生的爱国情绪,调动起好奇心,激发起学生的学习本课的兴趣。让学生感到数学无处不在。

(四)提出问题

教学内容:探索讨论椭圆的定义:

教师:问题1:数学中圆的定义是什么?

学生:平面内到定点距离等于定长的点的轨迹叫圆。

教师:问题2:能不能类比圆的定义,结合刚才椭圆的画法给出椭圆的定义?

学生:(可能回答)到两个定点距离之和等于常数的点的轨迹是椭圆,(其他学生补充)应该是平面内到两个定点距离之和等于常数的点的轨迹,才是椭圆。

教师:还有补充吗?(给学生充分的时间讨论,相信学生,不代办)

学生:通过课件观察随着F1、F2距离改变,轨迹变化情况。从而发现

2a>|F1F2| 时,轨迹是椭圆;

2a=|F1F2|时,轨迹是线段|F1F2|;

2a<|F1F2|时,无轨迹。

教师:问题3:经过 前面的观察和实验操作,同学们已经对于椭圆上的点的性质有了较深刻的认识,现在请同学给出椭圆的准确定义?

学生:平面内与两个定点 、 的距离的和等于常数(大于 )的点的轨迹叫做椭圆

设计意图:通过类比圆的定义,对问题串的思考及讨论,使学生真正经历、体验椭圆的形成过程,确切理解椭圆的定义及内在性质规律。

(五)分析解决问题

教学内容:推导椭圆的标准方程

教师:问题4:求曲线方 程的一般步骤是什么?

学生:①建系、取点;②列式;③代换;④化简;⑤证明

教师:问题5:要应该如何建立坐标系求椭圆方程?椭圆上动点M满足什么条件?教师巡视,对学生进行指导。尤其在化简过程中,对于根式的处理,学生会感到困难,教师应进行提示。(同 时,教师说明:建立坐标系应使建立的曲线方程尽量简洁整齐。)

学生:讨论完毕后,交流成果。同学从中选出最好的方案,

教师:以上两种方案是最好的。

问题6:观察一下焦点分别在x轴、y轴上的椭圆的标准方程,请问两个方程有什么共同点?

学生:(可能回答,让学生充分讨论)在两个方程中,总有a>b>0,椭圆的三个参数a、b、c总满足:即,a为老大。

教师:问题7:教材P39的思考如何解答?

学生:学生讨论,让小组代表上黑板作图解答。

教师:问题8:如何根据方程判断其焦点在x轴上还是在 y轴上?

学生:看分母大小,哪个分母大焦点就在对应的那条轴上。例如椭圆 ( , , )当 时表示焦点在 轴上的椭圆;当 时表示焦点在 轴上的椭圆。

3.必修二圆的方程教案 篇三

2.2.2直线方程的几种形式

(二)教学目标:掌握直线方程的一般式 教学重点:掌握直线方程的一般式 教学过程:

一、点斜式、两点式都是二元一次方程.直线的方程都可以写成二元一次方程,反过来,二元一次方程都表示直线.我们知道,在直角坐标系中,每一条直线都有倾斜角α.当α≠90°时,直线有斜率,方程可写成下面的形式:

y=kx+b

当α=90°时,它的方程可以写成x=x0的形式.

由于是在坐标平面上讨论问题,上面两种情形得到的方程均可以看成是二元一次方程.这样,对于每一条直线都可以求得它的一个二元一次方程,就是说,直线的方程都可以写成关于x、y的一次方程.

反过来,对于x、y的一次方程的一般形式 Ax+By+C=0.(1)其中A、B不同时为零.

(1)当B≠0时,方程(1)可化为yACx BB

(2)当B=0时,由于A、B不同时为零,必有A≠0,方程(1)可化为

付国教案

它表示一条与y轴平行的直线.

这样,我们又有:关于x和y的一次方程都表示一条直线.我们把方程写为

Ax+By+C=0

这个方程(其中A、B不全为零)叫做直线方程的一般式.

直线与二元一次方程是一对多的,同一条直线对应的多个二元一次方程是同解方程

二、1、已知一直线l沿x轴正方向移动3个长度单位,再沿Y轴负方向平移1个长度单位,又回到原来的位置。求斜率k。

分析:不妨设直线l的方程为y=kx+b(直观、方便)方法一:利用恒等变换。(平移?)

方法二:利用向量的平移(即直线的方向向量)方法三:从一般到特殊(以点代线)

上一篇:读《水浒传》有感300字下一篇:农村信用社风险的形成及防范措施