抽屉原理典型习题

2024-10-17

抽屉原理典型习题(9篇)

1.抽屉原理典型习题 篇一

三年级奥数——抽屉原理教案及练习题

一、本讲知识点和能力目标

1、知识点:逻辑推理

2、知识目标:开拓同学们的视野,理解数学问题并不全都是由数量和数量关系组成,解决问题有时却不用算术和几何知识,而是用推理的知来解答,从而提高同学们解决数学问题的能力和兴趣。

3、能力目标:1.使学生学会使用抽屉原理创造性地解决实际问题。2.培养学生有根据、有条理地进行思考和推理的能力。

二、教学方法:启发式教学方法

三、课外延伸、知识拓展 稍复杂的抽屉问题

四、需要理解和记忆的知识

1、什么是抽屉问题? 由于在西方首先是狄里希莱提出的这个原理,所以,又称为狄里希莱原理。“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子。”这个简单的事实就是著名的鸽笼原理,在我们国家更多地称为抽屉原理。

2、抽屉原理一

将N+1个苹果放入N个抽屉中,则必有一个抽屉中至少有2个苹果;抽屉原理二

将MN+1个苹果放入N个抽屉中,则必有一个抽屉中至少有M+1个个苹果。

第一课时 【经典例题】

例1.A、3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。B、5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了()块手帕。C、6只鸽子飞进5个鸽笼,那么一定有一个鸽笼至少飞进()只鸽子。例

2、三个小朋友在一起玩,请说明其中必有两个小朋友是同性别。

例3.三年一班有13名女生,她们的年龄都相同,请说明,至少有两个小朋友在一个相同的月份内出生。【要点】有条理思考,有序推理。【尝试实践1】

1.6只鸽子飞进了5个鸟巢,则总有一个鸟巢中至少有()只鸽子;2.把三本书放进两个书架,则总有一个书架上至少放着()本书;3.把7封信投进3个邮筒,则总有一个邮筒投进了不止()封信。

4.1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少含有()只鸽子。5.从8个抽屉中拿出17个苹果,无论怎么拿。我们一定能找到一个拿苹果最多的抽屉,从它里面至少拿出了()个苹果。

6.从()个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了7个苹果。第二课时

例4.任意三个整数中,总有两个整数的差是偶数。

例5.有10个鸽笼,为保证每个鸽笼中最多住1只鸽子(可以不住鸽子),那么鸽子总数最多能有几只?请用抽屉原理加以说明。

例6.某班有37个学生,最大的10岁,最小的8岁,问:是否一定有4个学生,他们是同年同月出生的? 例

7、某班有个小书架,40个同学可以任意借阅,试问小书架上至少要有多少本书,才能保证至少有一个同学能借到两本或两本以上的书。答:()本 【要点】创造性运用抽屉原理。【尝试实践2】

5、在长为100米的笔直马路一侧站有一些人,如果不管怎样站至少有两人的距离不大于10米,问至少要站多少人?

6、有5个队参加的单循环足球赛,已经赛了6场,证明:必有一个队至少赛3场。

7、任意50名外国旅游者中,是否一定能找到8个人,这8个人要么来自同一个国家,要么来自8个不同的国家?

8、某学生用10分钟做完25道数学题目,证明他在某一分钟内至少做完3道选择题。

9、据生物学家统计,人的头发不会超过20万根。某城市的人口有 100多万,问:是否能从该城市中找到5个人,这5个人的头发数目相同?说明理由。第三课时

8、正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同。例

10、有红袜2双,白袜3双,黑袜4双,黄袜5双,(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双.【要点】推理和计算结合在一起。【尝试实践3】

10.某班有个小书架,20个同学可以任意借阅,试问小书架上至少要有多少本书,才能保证至少有一个同学能借到两本或两本以上的书。12、2行5列共10个小方格,将每一个小方格涂上红色或蓝色,试证明:无论如何涂法,其中至少有三列,它们的涂色方式是一样的。

13、证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。

同步测试

一、填空

1、某小学有369位1996年出生的学生,那么至少有()个同学的生日是在同一天.2、正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有()个面颜色相同。

3、有红袜2双,白袜3双,黑袜4双,黄袜5双,(每双袜子包装在一起)若取出9双,证明其中必有()袜或()袜.4、某班有49个学生,最大的12岁,最小的9岁,一定有至少()个学生,他们是同年同月出生的。

5、在1米长的直尺上标出任意5个点,请你说明这5个点钟至少有两个点的距离不小于25厘米。

6、某小学五一班有48名同学,至少有()个同学在同一月过生日。

7、布袋中有60块大小、形状都相同的木块,每15块涂上相同的颜色,一次至少取出()块,才能保证其中至少有3块颜色相同.8、2行5列共10个小方格,将每一个小方格涂上红色或蓝色,无论如何涂法,其中至少有()列,它们的涂色方式是一样的。

9、有4个运动员练习投篮,一共投进50个球,一定有一个运动员至少投进()个球.10、某班有38个同学,老师至少要拿()本书,随意分给大家,才能保证一定有至少一名同学得到两本或两本以上的书。

11、黑、白、黄三种颜色的袜子各有很多只,在黑暗处至少拿出()只袜子袜子就能保证有一双是同一颜色的?

12、某班有49个学生,最大的12岁,最小的9岁,问:至少有()个学生,他们是同年同月出生的。13有10个鸽笼,为保证每个鸽笼中最多住1只鸽子(可以不住鸽子),那么鸽子总数最多能有()只。

14、一副扑克牌有四种花色,每种花色有13张,从中任意抽牌,最少要抽()张牌,才能保证有四张牌是同一花色的。

二、综合应用,论述题。

1、有3个不同的自然数,至少有两个数的和是偶数,为什么? 2、4个连续自然数分别被3除后,必有两个余数相同。为什么?

3、证明:在任意的37人中,至少有四人的属相相同。

4、有一条长50米的小路一旁种51棵树。证明:不管怎样种,至少有两棵树间的距离不少于1米。

5、在一条笔直的马路旁种树,从起点起,每隔一米种一棵树,如果把三块“爱护树木”的小牌分别挂在三棵树上,那么不管怎样挂,至少有两棵挂牌的树之间的距离是偶数(以米为单位),这是为什么。

2.抽屉原理 篇二

一、起源

抽屉原理最先是由19 世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的.这个原理可以简单地叙述为“把10个苹果,任意分放在9 个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”.这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果.抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用.二、抽屉原理的基本形式

定理1,如果把n+1 个元素分成n 个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素.证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1 个元素,从而n 个集合至多有n 个元素,此与共有n+1 个元素矛盾,故命题成立.在定理1 的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名.同样,可以把“元素”改成“鸽子”,把“分成n 个集合”改成“飞进n 个鸽笼中”.“鸽笼原理”由此得名.解答抽屉原理的关键:

假设有3 个苹果放入2 个抽屉中,则必然有一个抽屉中有2 个苹果,她的一般模型可以表述为:

第一抽屉原理:把(mn+1)个物体放入n 个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。

若把3 个苹果放入4 个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:

第二抽屉原理:把(mn-1)个物体放入n 个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

抽屉原理一

把4 只苹果放到3 个抽屉里去,共有4 种放法,不论如何放,必有一个抽屉里至少放进两个苹果。

同样,把5 只苹果放到4 个抽屉里去,必有一个抽屉里至少放进两个苹果。

更进一步,我们能够得出这样的结论:把n+1 只苹果放到n 个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。

利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所 学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。

抽屉原理二

这里我们讲抽屉原理的另一种情况。先看一个例子:如果将13 只鸽子放进6 只鸽笼里,那么至少有一只笼子要放3 只或更多的鸽子。道理很简单。如果每只鸽笼里只放2 只鸽子,6 只鸽笼共放12 只鸽子。剩下的一只鸽子无论放入哪 只鸽笼里,总有一只鸽笼放了3 只鸽子。这个例子所体现的数学思想,就是下面的抽屉原理2。

抽屉原理2:将多于m×n 件的物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

说明这一原理是不难的。假定这n 个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m 件,这样,n 个抽屉中可放物品的总数就不会超过m×n 件。这与多于m×n 件物品的假设相矛盾。这说明一开始的假定不能成立。所以至少有一个抽屉中物品的件数不少于m+1。从最不利原则也可以说明抽屉原理2。为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n 个抽屉中每 个都放入m 件物品,共放入(m×n)件物品,此时再放入1 件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m +1)件物品。这就说明了抽屉原理2。

不难看出,当m=1 时,抽屉原理2 就转化为抽屉原理1。即抽屉原理2 是抽屉原理1 的推广。我们很容易理解这样一个事实:把3 只苹果放到两个抽屉中,肯定有一个抽屉中有2 只或2 只以上的苹果。用数学语言表达这一事实,就是:将n+1 个元素放入n 个集合内,则一定有一个集合内有两个或两个以上的元素(n 为正整数)。

这就是抽屉原理,也称为“鸽笼(巢)”原理。这一原理最先是由德国数学家狄里克雷明确提出来的,因此,称之为狄 里克雷原理。

抽屉原理还有另外的常用形式:

抽屉原理2:把m 个元素任意放入n(n < m)个集合里,则一定有一个集合里至少有k 个元素,其中:

抽屉原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

抽屉原理又叫重叠原则,抽屉原则有如下几种情形。

抽屉原则①:把n+1 件东西任意放入n 只抽屉里,那么至少有一个抽屉里有两件东西。

抽屉原则②:把m 件东西放入n 个抽屉里,那么至少有一个抽屉里至少有[m/n]件东西。

3.抽屉原理教案 篇三

清溪中心小学 汪谦

教材内容

义务教育课程标准实验教科书第十二册第五单元第一节 教学目标

1.基础知识目标:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

2.能力训练目标: 1)、会用“抽屉原理”解决简单的实际问题; 2)、通过操作发展学生有根据、有条理地进行思考和推理的能力,形成比较抽象的数学思维。

3.个性品质目标: 通过“抽屉原理”的灵活应用感受数学的魅力,产生主动学数学的兴趣。教学过程

一、创设情景,导入新课

师带领学生玩“抢椅子”的游戏,规则这4位学生必须都坐下。引导学生观察游戏结果——不管怎么坐,总有一个座位上至少坐了2位同学。师:为什么?(学生回答)

师:可不可能一个椅子上坐3位同学?(可能)可不可能每个椅子上只坐1位同学?(不可能)也就是说,不管怎么坐,总有一个椅子上至少要坐2位同学。师:那么像这样的现象中隐藏着设么数学奥秘呢?大家想不想弄明白?好,就让我们一起走进数学广角来研究这个原理。希望大家都能积极的动手动脑,参与到学习活动中来,齐心协力把这个数学奥秘弄懂!

二、探究新知

(一)教学例1

1、出示题目:把4枝铅笔放进3个文具盒里。

师:刚才我们做游戏,不管怎么坐,总有一把椅子上至少坐了2位同学。那么,把4枝铅笔放进3个文具盒里,有多少种放法呢?会出现什么情况呢?大家可不可以大胆的猜测一下?

(学情预设:不管怎么放,总有一个文具盒里至少放进了2枝铅笔。)

2、理解“至少” 师:“至少”是什么意思?如何理解呢?(最少2枝,也可能比2枝多)

师:到底我们猜测的对不对呢?怎么样证明这种现象呢?下面,就需要自己动手利用学具去摆一摆,动脑去想一想,看看能不能证明我们这个猜想。

3、自主探究

(1)两人一组利用手中的学具1摆一摆,想一想,可以怎么样去摆放?老师帮大家准备了一个记录单,你们可以把摆放的不同方法记录下来,以便你们分析结果是不是符合我们之前的猜测。(2)全班交流,学生汇报。第一种方法:

(4,0,0)(3,1,0)(2,2,0)(2,1,1)学生解释自己的想法,验证猜测。

教师课件演示,验证结论。(像大家刚才这样把每一种放法都列举出来,然后去一一验证,这种方法叫列举法)第二种方法:

师:还有别的思考方法,来验证我们之前的猜测吗? 假设法:(学生汇报)

师课件演示,说明:先假设每个文具盒里各放入1枝铅笔,余下1枝铅笔不管放进哪个文具盒里,一定会出现“总有一个文具盒里至少有2枝铅笔”的现象。

4、优化方法

那么把5枝铅笔放进4个文具盒里,会怎样呢? 那么把6枝铅笔放进5个文具盒里,会怎样呢? 那么把7枝铅笔放进6个文具盒里,会怎样呢? 那么把100枝铅笔放进99个文具盒里,会怎样呢?(学生解释说明,师课件演示)

师:你们为什么都用第二种方法,而不用列举法呢?

5、发现规律

师:通过刚才我们分析的这些现象,你发现了什么?(当笔的枝数比铅笔盒数多1时,不管怎么放,总有一个文具盒里至少放2枝铅笔。)

师:同学们能有这么了不起的发现,真不错!说明大家认真动脑思考了。那么老师这有一道和我们刚才这些题稍稍不同的题,看看你们能不能用这种思维来解决一下?

6、出示做一做:7只鸽子飞回5个鸽舍,至少有()只鸽子要飞进同一个鸽舍里?

(1)学生独立思考,可以自己想办法解决。(2)全班汇报,解释说明。

(3)教师用课件演示(虽然鸽子的只数比鸽舍的数量多2,但是也是至少有2只鸽子要飞进同一个鸽舍里。)

师:同学们真是太了不起了,善于运用分析、推理的方法来证明问题,得出结论。同学们的思维在不知不觉中也提升了许多。大家敢不敢再来挑战一道更难的题目?

(二)教学例2

1、出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?

2、学生利用学具探究

3、学生汇报,教师课件演示

如果把我们的这种思维方法用式子表示出来,该怎样列式? 5÷2=2…..1(3)

4、拓展:把7本书放进2个抽屉里呢? 把9本书放进2个抽屉里呢?用式子怎么表示? 7÷2=3….1(4)9÷2=4…1(5)

师:同学们观察这些板书,你发现了什么规律吗?(商+余数)(商+1)

5、做一做:8只鸽子飞回3个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。为什么? 学生独立思考,汇报交流。板书式子:8÷3=2…2(2+1=3)

教师课件演示:至少有3只鸽子要飞进同一个鸽舍里,所以应该是商加1.(三)结论

师:同学们,真的非常厉害,刚才我们一起探究的这种现象,就成为“抽屉原理” 课件出示。

三、拓展应用

“抽屉原理”在现实生活中引用也是非常广泛的。下面,老师再带大家做一个小游戏。扑克牌游戏。

4.抽屉原理 篇四

(1)

抽屉原则(1)

如果把n+k(k 大于等于1)件东西放入n个抽屉,那么至少有一个抽屉中有2件或2件以上的东西。

学习例题

例1.某次联欢会有100人参加,每人在这个联欢会上至少有一个朋友,那么这100人中,至少有几个人的朋友个数相同?

例2.在长度为2米的线段上任意点11个点,至少有2个点之间的距离不大于20厘米。为什么?

例3.任意4个自然数,其中至少有2个数的差是3的倍数,这是为什么?

例4.任意取多少个自然数,才能保证至少有两个数的差是5的倍数?

例5.从1~100的自然数中,任意52个数,其中必有2个数的和为102;为什么?

2. 口袋里放有足够多的红球、黄球、蓝球,每个小朋友任意选择两种颜色的小球各1个,那么至少有多少个小朋友才能保证有两人选出的小球是相同的?

3. 从25、26、27、28、…、44这20个数中任取11个不同的数,其中至少有两个数的差为10,请说明为什么?

4. 在100米的路段上植树,至少需要植多少棵树,才能保证至少有两棵树之间的距离小于10米?

5. 从1到50的自然数中,任取27个数,其中必有两个数的和等于52。这是因为:

8.从1、2、3、4、…,10这10个数中,任取多少个数,可以保证在这些数中一定能找到两个数,使其中一个数是另一个数的倍数?

课后作业:

1.从1~100的所有奇数中,任意27个不同的数,其中必有两个数的和等于102,请说明理由。

2.某小学学生的年龄最大为13岁,最小为6岁,至多需要从中挑选多少个同学,就一定能使挑选出的同学中有两位同学的岁数相同?

3.任意取多少个自然数,才能保证至少有两个数的差是7的倍数?

4.学校买来历史、文艺、科普三种图书若干本,每个同学从中任意借两本。那么,至少

多少个学生中一定有两个人所借图书的种类相同?

5.抽屉原理 篇五

赵民强

抽屉原理一

把n+1个苹果放入n个抽屉中,则必有一个抽屉中至少放了两个苹果.在解答实际问题时,关键在于找准什么是“抽屉”和什么是“苹果”.下面包通过几个例题来熟悉、掌握这个原理。

1、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

解: 首先要确定摸出的3枚棋子的颜色可以有多少种不同的情况.可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,我们把它看作是4个抽屉.把每人取的3枚棋子作为一组,每组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?

解: 扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,把摸牌的人看成”苹果”,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。

3、从2、4、6、„、30这15个偶数中,任取9个数,证明:其中一定有两个数之和是34。解:我们用题目中的15个偶数配对,制造8个抽屉:如下图

凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。

现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。

4、从1、2、3、4、„、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

解:在这20个自然数中,差是12的有以下8对:

{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到 :只少有两个数在同一个抽屉中,保证它们的差是12。

例5、证明:在任取的5个自然数中,必有3个数,它们的和是3的倍数。

解: 自然数按照被3除所得的余数分别为0、1、2,把全体自然数分成3类,即构成3个抽屉.如果任选的5个自然数中

(1)有3个数在同一个抽屉,那么这3个数除以3得到相同的余数r,所以它们的和一定是3的倍数(3r被3整除)。(2)如果每个抽屉至多有2个选定的数,那么5个数在3个抽屉中的分配方案,必为1个,2个,2个,即3个抽屉中都有选定的数.这样可以在每个抽屉中各取1个数,那么这3个数除以3得到的余数分别为0、1、2.因此,它们的和一定是3的倍数。(0+1+2被3整除)例6 某校校庆,来了n位校友,彼此认识的握手问候.证明:无论什么情况,在这n个校友中至少有两人握手的次数一样多。解: 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.校友人数与握手次数的不同情况(0,1,2,„,n-1)数都是n,还无法用抽屉原理解。为此另辟蹊径

如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、„、n-2,还是后一种状态1、2、3、„、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

练习

52张扑克牌有红桃、黑桃、方块、梅花4种花色各13张,问: ①至少从中取出多少张牌,才能保证有花色相同的牌至少2张。②至少从中取出几张牌,才能保证有花色相同的牌至少5张。③至少从中取出几张牌,才能保证有4种花色的牌。

④至少从中取出几张牌,才能保证至少有2张梅花牌和3张红桃。⑤至少从中取出几张牌,才能保证至少有2张牌的数码(或字母)相同。答案: 5张, 17张,40张,43张,14张.简单的抽屉原理

(二)如果把m×n+R(R≥1)个苹果放入n个抽屉,那么,必定有一个抽屉里有n+1个苹果.再来研究几个题目

1、证明:任取8个自然数,必有两个数的差是7的倍数。

解: 在与整除有关的问题中有这样的性质: 如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是建立7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。

把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],„,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,„.在研究与整除有关的问题时,常用剩余类作为抽屉 根据抽屉原理,可以证明:

任意n+1个自然数中,总有两个自然数的差是n的倍数。

在有些问题中,“抽屉”和“苹果”不是很明显的,需要精心制造“抽屉”和“苹果”.如何制造“抽屉”和“苹果”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。

2、在边长为3米的正方形内,任意放入28个点,求证:必有4个点,以它们为顶点的四边形的面积不超过1平方米。

解:根据题目的结论,考虑把这个大正方形分割成面积为1平方米的9个小正方形(如右图)。

因为28=3×9+1,所以根据抽屉原理,至少有4个点落在同一个边长为1米的小正方形内(或边上)

如上(图),这4个点所连成的四边形的面积总小于或等于小正方形的面积,即以这4个点为顶点的四边形的面积不超过1平方米。例

3、放体育用品的仓库里有许多足球、排球和篮球.有66名同学来仓库拿球,要求每人至少拿1个球,至多拿2个球.问:至少有多少名同学所拿的球种类是完全一样的? 解:拿球的配组方式有以下9种: {足},{排},{篮},{足,足},{排,排},{篮,篮},{足,排},{足,篮},{排,篮}。把这9种配组方式看作9个抽屉。

因为66÷9=7„3,所以至少有7+1=8(名)同学所拿的球的种类是完全一样的。

4、把1、2、3、„、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于17。

解:把这一圈从某一个数开始按顺时针方向分别记为a1、a2、a3、„、a10(见图).相邻的三个数为一组,有a1a2a3、a2a3a4、a3a4a5、„、a9a10d1、a10a1a2共10组。

这十组数的和的总和为

(a1+a2+a3)+(a2+a3+a4)+„+(a10+a1+a2)

=3(a1+a2+a3+„+a10)=3×55=165=16×10+5。

根据抽屉原理这十组数中至少有一组数的和不小于17。这道题还可以用下面的方法证明:

在10个数中一定有一个数是1,设a10=1,除去a10之外,把a1、a2、„、a9这9个数按顺序分为三组a1a2a3、a4a5a6、a7a8a9.下面证明这三组中至少有一组数之和不小于17。因为这三组数之和的总和为

(a1+a2+a3)+(a4+a5+a6)+(a7+a8+a9)=a1+a2+„+a9 =2+3+„+10=54=3×16+6。

根据抽屉原理这三组数中至少有一组数之和不小于17。

第二种证法中去掉了最小数1,其实若去掉2、3、4也可以的,因为54=3×17+3,所以用第二种证法还可以得出至少有一组数的和不小于18的结论,而第一种证法却不能得出这个结论。

此外,由于54=3×18,因此即使第二种证法也不能由抽屉原理得出三组数中至少有一组数的和不小于19的结论.事实上,如右图中所示,划了线的三组数的和都是18(并且其他任何三个相邻数之和都小于18)。

习题

1.某校的小学生年龄最小的6岁,最大的13岁,从这个学校中任选几位同学就一定保证其中有两位同学的年龄相同?

2.中午食堂有5种不同的菜和4种不同的主食,每人只能买一种菜和一种主食,请你证明某班在食堂买饭的21名学生中,一定至少有两名学生所买的菜和主食是一样的。

3.证明:任取6个自然数,必有两个数的差是5的倍数。

4.为了欢迎外宾来校参观,学校准备了红色、黄色、绿色的小旗,每个同学都左右两手各拿一面彩旗列队迎接外宾.至少有多少位同学参加,才能保证其中至少有两个人不但所拿小旗颜色一样,而且(左、右)顺序也相同?

5.从10至20这11个自然数中,任取7个数,证明其中一定有两个数之和是29。

6.从1、2、3、„、20这20个数中,任选12个数,证明其中一定包括两个数,它们的差是11。7.20名小围棋手进行单循环比赛(即每个人都要和其他任何人比赛一次),证明:在比赛中的任何时候统计每人已经赛过的场次都至少有两位小棋手比赛过相同的场次。解答

1.从6岁到13岁共有8种不同的年龄,根据抽屉原理,任选9名同学就一定保证其中有两位同学的年龄相同。

2.共有4×5=20(种)不同的买饭菜的方式,看作20个抽屉,21名同学按照买饭菜的方式进入相应的抽屉,根据抽屉原理,至少有两人属于同一抽屉,即他们所买的菜和主食是一样的。

3.把自然数按照除以5的余数分成5个剩余类,即5个抽屉.任取6个自然数,根据抽屉原理,至少有两个数属于同一剩余类,即这两个数除以5的余数相同,因此它们的差是5的倍数。4.持两面彩旗的方式共有以下9种:

红红、黄黄、绿绿、红黄、黄红、红绿、绿红、黄绿、绿黄.把这9种持旗方式看作9个抽屉,根据抽屉原理可得出,至少要有10个同学,才能保证他们当中至少有两人不但拿小旗的颜色一样而且顺序相同。

5.将这11个自然数分成下列6组: {10,19},{11,18},{12,17},{13,16},{14,15},{20},从中任取7个数,根据抽屉原理,一定有两个数取自同一数组,则这两个数的和是29。6.把这20个数分成下列11个组。{1,12},{2,13},{3,14},„{9,20},{10},{11}.其中前9组中的两数差为11.任取12个数,其中必有两个数取自同一数组,则它们的差是11.7.如果有一个人赛过0次(即他还未与任何人赛过),那么最多的只能赛过18次;如果有人赛过19次(即他已与每个人都赛过了),那么最少的只能赛过1次.无论怎样,都只有19种情况,根据抽屉原理,20名棋手一定有两人赛过的场次相同。

数学竞赛简单的抽屉原理

把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:

抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。

如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。

比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、„等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。

应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

分析与解答 首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 分析与解答 扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。

例3 证明:任取8个自然数,必有两个数的差是7的倍数。

分析与解答 在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。

把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],„,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,„.在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。

在有些问题中,“抽屉”和“苹果”不是很明显的,需要精心制造“抽屉”和“苹果”.如何制造“抽屉”和“苹果”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。

例4 从2、4、6、„、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。分析与解答 我们用题目中的15个偶数制造8个抽屉: 26 24

凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。

现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。

例5 从1、2、3、4、„、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。分析与解答在这20个自然数中,差是12的有以下8对:

{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。

另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,„,12),那么这12个数中任意两个数的差必不等于12)。例6 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。分析与解答 根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质):

{1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。

从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。

例7 证明:在任取的5个自然数中,必有3个数,它们的和是3的倍数。

分析与解答 按照被3除所得的余数,把全体自然数分成3个剩余类,即构成3个抽屉.如果任选的5个自然数中,至少有3个数在同一个抽屉,那么这3个数除以3得到相同的余数r,所以它们的和一定是3的倍数(3r被3整除)。

如果每个抽屉至多有2个选定的数,那么5个数在3个抽屉中的分配必为1个,2个,2个,即3个抽屉中都有选定的数.在每个抽屉中各取1个数,那么这3个数除以3得到的余数分别为0、1、2.因此,它们的和也一定能被3整除(0+1+2被3整除)。

例8 某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。

分析与解答 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.校友人数与握手次数的不同情况(0,1,2,„,n-1)数都是n,还无法用抽屉原理。

然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、„、n-2,还是后一种状态1、2、3、„、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

6.抽屉原理 篇六

内容概述

抽屉原理在教字、表格、图形等具体问题中有较复杂的应用.能够根据已知条件合理地选取和设计“抽屉”与“苹果”,有时还应构造出达到最佳状态的例子.

典型问题

基础

1.将60个红球、8个白球排成一条直线,至少会有多少个红球连在一起?

2.17名同学参加一次考试,考试题是3道判断题(答案只有对或错),每名同学都在答题纸上依次写上了3道题目的答案.请问:至少有几名同学的答案是一样的?

3.任意写一个由数字1、2组成的六位数,从这个六位数中任意截取相邻两位,可得一个两位数,请证明:在从各个不同位置上截得的所有两位数中,一定有两个相等.

4.将1至6这6个自然数随意填在图2,4-1的六个圆圈中,试说明:图中至少有一行的数字之和不小于8。

5.从l,2,3,„,99,100这100个数中任意选出51个数,请说明:

(1)在这51个数中,一定有两个数的差等于50;(2)在这51个数中,一定有两个数差1.

6.从1,2,3,„,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于47

7.从1至11这11个自然数中至少选出多少个不同的数,才能保证其中一定有两个数的和为127

8.(1)任给4个自然数,请说明:一定有两个数的差是3的倍数;(2)至少取几个数,才能保证一定有两个数的差是7的倍数?

9.至少找出多少个不同的两位数,才能保证其中一定存在两个数,它们的差是个位数字与十位数字相同的两位数.

10.在一个边长为2厘米的等边三角形内(包括边界)选出5个点,请证明:一定有两个点之间的距离不大于1.

提高

1.如图24—2,将2行5列的方格纸每一格染成黑色或白色,请说明:不管怎么染,总有两列的染色方式是一样的.

2.任意写一个由数字l、2、3组成的三十位数,从这个三十位数中任意截取相邻三位,可得一个三位数,请证明:在从各个不同位置上截得的所有三位数中,一定有两个相等.

3.27只小猴分140颗花生,每只小猴最少分1颗,最多分9颗,请问:其中至少有几只小猴分到的花生颗数一样多?

4.能否在4×4方格表的每个格子中填l、2、3中的一个数字,使得每行、每列以及它的两条对角线上的和互不相同?

5.从l至99这99个自然数中,最多可以取出多少个数,使得其中每两个数的和都不等于1007最多可以取出多少个数,使得其中每两个数的差不等于5?

6.如果在1,2,„,n中任取19个数,都可以保证其中必有两个数的差是6,那么n最大是多少?

7.从1至50这50个自然数中至少要选出多少个数,才能保证其中必有两个数互质?

8.从1至30这30个自然数中取出若干个数,使其中任意两个数的和都不能被7整除.请问:最多能取出多少个数?

9.请说明:任意5个数中必有3个数的和是3的倍数.

10.任选7个不同的数,请说明:其中必有2个数的和或者差是10的倍数。

11.有9个人,每人至少与另外5个人互相认识.试证明:可以从中找到3个人,他们彼此相互认识.

12.(1)在一个边长为1的正方形里放/23个点,以这3个点为顶点连出的三角形面积最大是多少?

(2)在一个边长为1的正方形中随意放入9个点,这9个点任何三点不共线,请说明:这9个点中一定有3个点构成的三角形面积不超过

1. 8

拓展

1.从l至12这12个自然数中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的倍数?

2.(1)请说明:在任意的68个自然数中,必有两个数的差是67的倍数;

(2)请说明:在1,11,111,1111,„,这一列数中必有一个是67的倍数.

3.求证:对于任意的8个自然数,一定能从中找到6个数a、b、c、d、e、f,使得(a – b)×(c – d)×(e – f)是105的倍数.

4.从l至25这25个自然数中最多取出多少个数,使得在取出来的这些数中,任何一个数都不等于另两个不同数的乘积.

5.25名男生与25名女生坐在一张圆桌旁,请说明:至少有一人,他(或她)的两边都是女生.

6.时钟的表盘上按标准的方式标着1,2,3,„,11,12这12个数,在其上任意做n个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个,这3个扇形能覆盖整个钟面的全部12个数,求n的最小值.

7.(1)将一个5×5的方格表每个方格都染成黑、白两种颜色之一,请证明:一定存在一个长方形,四个顶点处的四个方格同色;(2)将一个4×19的方格表每个方格都染成黑、白、红三种颜色之一,请证明:一定存在一个长方形,四个顶点处的四个方格同色.

7.抽屉原理 篇七

1、自制的一副玩具牌共计52张(含四张牌:红桃,红方,黑桃,黑梅),每种牌都有1点,2点„„13点牌各一张)洗好后背面超上放,一次至少抽取()张牌才能保证其中必定有两张牌上的点数和颜色都相同。如果要求一次抽出的牌必定有3张牌的点数都是相邻的,那么至少要取()张牌?

2、证明:37人中,(1)至少有4人属相相同(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内?

3、有一副扑克牌共54张,问,至少摸出多少张才能保证:(1)其中有4张花色相同?(2)四张花色都有?

4、一个盒子里有10个红球,8个篮球,6个绿球,4个白球如果闭上眼睛,从盒子里摸球,每次只许摸一个球,至少要摸出多少个?才能保证摸出的这几个球中至少有两个颜色相同?

5、从1到20这20个自然数中,随意取几个,必有两个数,其中有一个是另一个的被数?

6、从1,2,3„„2004这些数中,最多可以取出多少个数,使得每两个数的差不等于4?

7、希望小学有733名小学生,至少有()名学生在同一天过生日?

8、一个盒子里有五种不同形状的小木块,一次最少取()块,才能保证其中至少有9块形状相同?

9、一副扑克牌有54张,至少抽取()张,才能保证其中必有一张“A”

A.49

B.50

C.51

D.52

10、有红,黄,蓝,绿四色的小球各10个,混合放在一个布袋里,一次摸出8个小球,其中至少有()个小球的颜色是相同的。

A.3

B.2

C.8

抽屉原理(2)

1、鸽子是和平的象征,胡佳养了29只鸽子,建造了7个笼子,如果鸽子全部归笼子,说明总有一个鸽笼至少飞进了5只鸽子?

2、从前面30个自然数中至少要取出几个数,才能保证取出的数中能找到两数,其中较大的数是较小数的倍数?

3、某袋中装有70个球,其中有20个红球,20个绿球,20个黄球。其余的是黑球和白球。为了确保取出的球至少含有10个相同的球,最少必须从袋中取出几个球?

4、随便找来()人,就可以保证他们中至少有两个人的属相相同?

5、一个班里有59名同学,那么其中至少有()名同学在同一个星期里过生日?

6、学校排练健美操,在男女各20名的班级里,至少选()名同学才能保证既有男生又有女生?

7、从1,2,3,4,5,6,7,8.9.10,11,12中最多选出几个数,使得在选中的数中,每一个数都不是另一个数的2倍?

8、妈妈新买来某红色,白色,蓝色的筷子各8根,兰兰说:“我要用红色的筷子。”明明说:“我要用蓝色的筷子。”妈妈至少取出多少根才一定能满足他们两个人的要求?

9、从4,8,12,16,20,„„,72,76这列数中(都是4的倍数,最大是76),任意取出11个数,其中至少两个数的差为36,请说明原因。

10、经过调查,正阳小学有32名学生是五月份出生的,至少有()人在同一天过生日?

A.3

B.2

C.4

11、“华杯”赛中获奖的87名学生,来自12所小学,至少有()名学生来自同一所学校?

12、明明每分钟脉搏跳76次,这样能够保证脉搏在某一秒钟内至少跳()次?

抽屉原理(3)

1、第三十一届国际中学生数学奥林匹克竞赛于1990年7月在北京举行,全世界52个国家的308名选手参加了竞赛,按组委会规定,每个国家的选手不得超过6名,至少有()个国家派6名选手参赛 A.50

B.48

C.45

2、袋子里有四种不同颜色的小球,每次摸出2个,要保证有10 次所填出的结果是一样的。至少要摸()次

3、某班有27名同学排成三路纵队外出参观,同学们都带着红色或白色的太阳帽,在9个横排中,至多有()排同学戴的帽子颜色不同?

4、一副扑克牌共54张(其中两张王牌)至少从中抽出()张牌才能保证至少有4张牌是红桃?

5、要在30米长的水泥石上的16盆花,不管怎么放,至少有几盆之间的距离不超过2米?

6、有一个矩形,它由三行若干小格组成,对于这个矩形的小方格用两种颜色涂色,至少有多少列才能保证其中必有两列的涂色方案完全相同?

7、库房里有一批篮球,排球和足球和手球,每人任意搬运两个,至少有多少人搬运才能保证有5人搬运的球完全一样?

8、有一个3×4平方米的长方形盘子中,任意撒入5个点,5个点中距离最小的两个点的最大距离是几米?

9、某中学1999名学生去游故宫,景山和北海三地,规定每人至少去一处,至多去两地游览,那么至少有多少游得地方相同?

8.《抽屉原理》说课稿 篇八

今天我将要为大家讲的课题是《抽屉原理》。

首先,我对本节教材进行一些分析:

一、教材结构与内容简析

本节内容在全书及章节的地位:《抽屉原理》是义务教育课程标准实验教科书第十二册第五单元第一节。本节共三个例题,例

1、例2的教材通过几个直观例子,借助实际操作向学生介绍抽屉原理,例3则是在学生理解抽屉原理这一数学方法的基础上,用这一原理解决简单的实际问题。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生的展示数学原理的灵活应用,让学生感受数学的魅力,贯穿初步的数论及组合知识。

二、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:、基础知识目标:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。、能力训练目标:

1)、会用“抽屉原理”解决简单的实际问题。

2)、通过操作发展学生有根据、有条理地进行思考和推理的能力,形成比较抽象的数学思维。、个性品质目标:

通过“抽屉原理”的灵活应用感受数学的魅力,产生主动学数学的兴趣。

三、教学重点、难点、关键

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。

重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。通过设计教学环节让学生动手操作,自主探索,小组合作交流的方法找到解决问题的关键,总结出解决问题的办法。

难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。通过不同类型的练习,以及观看鸽巢原理演示图,建构知识,从本质上认识抽屉原理,将抽屉原理模型化,从而突破难点。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

四、教法

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。由于本节课的教学内容较为抽象,着重采用情境教学法,直观演示法与谈话法相结合的方式进行教学。

五、学法

教学最重要的就是让学生学会学习的方法。授之以渔,而非授之以鱼!因此在教学中要特别重视学法的指导。本节课学生主要采用了自主、合作、探究式的学习方式。

六、教学程序及设想

1、由鲁宾孙航海故事 引入:把三枚金币放进两个盒子里,至少有一个盒子会放几枚金币?把教学内容转化为具有潜在意义的让学生感兴趣的问题,让学生产生强烈的求知欲望,使学生的整个学习过程成为“探索”,继而紧张地沉思,寻找理由,证明过程。

在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

9.抽屉原理教案 篇九

主持:大家好,今天的炫我两分钟由我来主持,今天呢我来给大家变个魔术,这就是我要用的道具:扑克牌,(举起来给大家看)谁能大声的告诉我一副扑克牌有多少张呢?

生:54张。

主持人:声音洪亮的同学一会儿我要请你来和我共同完成这个魔术哦。现在我把大王小王这两张牌去掉,(扣在桌子上)现在剩下多少张了呢?

生:52张。

主持人:我要请一个同学帮我洗一下牌,打乱他们的顺序,谁愿意。(请最近的一个同学洗牌)。好了,现在这副牌被彻底的打乱了顺序,接下来我要请5名同学到台上来,(快速确定人选)谁愿意参与?我这魔术成不成功全仰仗你们了,现在你们每人抽取一张牌,偷偷的看一眼,千万不要告诉别人你抽到了什么?记住规则了吗?(让5名同学每人抽出一张牌),好,除了你们自己,谁都不知道你们抽到了什么?但我敢肯定地说:“你们抽到的这5张扑克牌至少有2张是同一种花色的,(大屏幕显示)大家相信我的判断吗?见证奇迹的时候到了,请你们一一亮出手中的牌,大家赶快帮我找一下是不是至少有2张牌是同一花色的?

生:是。

如果有学生说:你猜的不对,有3张牌都是红桃。

主持:我说的是至少有2张牌,那一定是2张牌吗?

生:不一定,至少有2张,可能是2张,也可能是3张、还可能是4张,还可能是5张都是同一花色的。

主持:解释的非常好,我说至少有2张牌是同一花色的,但我没规定到底是哪一种花色,可能是红桃、也可能是黑桃、可能是方片、也可能是梅花。不管是哪一张花色,总有一个花色会出现至少2张相同的。现在有( )张都是( )花色,说明我的判断是正确的。

我的表演到此结束,掌声在哪里?谢谢大家。

师:溪纯的魔术变得真不错,有好些同学都在羡慕他的料事如神,怎么一猜就中了呢?其实这个魔术不仅他会变,你也会变,秘密在哪呢?学完这节课之后大家就会明白了,这节课我们就共同来探究《抽屉原理》。

师:面对这个课题,你有什么疑问呢?

生:什么是抽屉原理?

生:抽屉原理与刚才的魔术有什么关系?

生:学习抽屉原理有什么用?

师:带着这些问题进入我们今天的课堂。

(设计意图:以魔术的形式激发学生的学习兴趣,巧妙的向学生初步渗透了“不管怎样”、“总有一个”“至少”等概念。使学生初步感知“抽屉原理”的基本思想,同时也引发了数学思考。)

(二)尝试小研究

课前的时候,老师让大家进行了尝试研究。在小组交流之前,快速浏览老师给出的小组交流要求。谁能大声的给大家读出来。

好,开始组内交流

《抽屉原理》课前尝试小研究

把3本书放进2个抽屉中,可以怎样放?找出所有不同的摆放情况。可以用手中的笔代替书摆一摆,也可以画一画。

1、我找到的摆放情况:

我找到了( )种不同的摆放情况。

3、观察第一种摆放情况,哪个抽屉里放书本书最多,用彩笔圈出来。依次圈出其它摆放情况中放书最多的那个抽屉。

4、仔细观察每种摆放情况中放书最多的那个抽屉。

我的发现:放书最多的抽屉至少放进了( )本书。

《抽屉原理》课上尝试小研究

我们小组研究的是把( )本书放进( )个抽屉中。

我们组的方法是:

我们组的结论是:总有一个抽屉至少放( )本书。

(设计意图:通过自主性、开放性的操作活动让学生体会假设法的简洁性。)

(三)、小组合作探究。

师:希望你们在交流的时候,牢记这些注意事项,并落实到你们的行动中,好开始组内交流。

组内交流尝试小研究。

出示合作指南:1、组长组织本组成员有序进行交流。

2、认真倾听其他组员的发言,如有不同意见,敢于发表自己的想法。

3、组长带领大家重点讨论有不同意见的题目,并达成一致的意见。

4、再次确认发言顺序,准备全班交流。【设计意图:培养孩子认真倾听的好习惯,增强组内成员之间的互惠互赖,让每一个人都有所进步。】

(四)、班级展示。

师:老师刚才发现某某小组在今天的交流中表现得非常好,所有成员能够做到认真倾听,而且能够及时补充自己的不同意见,为他们小组加上1分。今天哪个小组愿意把你们的交流的结果与大家一起分享呢?

全班交流

师:通过我们小组的共同努力,出色的完成了本次的汇报任务,奖励你们小组一颗团结合作星。

(五)、教师点拨提升

1、运用枚举法探究原理

生1:我找到的摆放情况是第一种:第一个抽屉里放2本书,第二个抽屉里放1本书。第二种是第一个抽屉里放1本书,第二个抽屉里放2本书。大家同意我的意见吗?

生2:我认为除了这2种情况之外,还可以是第一个抽屉里放3本书,第二个抽屉里不放书。或者第一个抽屉里不放书,第2个抽屉里放3本书。大家同意我的意见吗?(放在展台上)

生3:把3本书放进2个抽屉中,我认为是每个抽屉里都必须放有书。

生2:把3本书放进2个抽屉中,只要是保证把3本书都放进抽屉里就可以了。有个抽屉可以是0本书。

师:确实如某某所说,只要确保把书都放进去就可以了,某个抽屉是允许不放书的。我们来看一下这是某某同学总结的摆放情况,你们认为这样写好不好?好在哪?

生:特别清楚,简单。

师:老师还发现了某某同学这样的记录方式,你能看得懂吗?这就是数学符号的优点所在:简洁,记录方便,一目了然,希望同学们能够学到这种记录的好方法。好,组长继续交流下一题。

生1:我们小组找到了四种不同的摆放方法。

生2:老师,我有不同意见,我能用两句话来概括这四种情况。一种是:一个抽屉放2本,另一个抽屉放1本。另一种是:一个抽屉放3本,另一个抽屉不放。

师:大家认为他说的有道理吗?当我们不考虑抽屉的顺序,1、2种可以合成一种情况:一个抽屉放2本,一个抽屉放1本,3、4种也可以合成一种情况就是一个抽屉放3本,另一个抽屉放0本。

师:好,继续交流。

生:第一种摆放情况我圈出了2本书,第二种也圈出了2本书,第3、4种我圈出了3本书。

生:放书最多的那个抽屉至少放进了2本书。

生:至少是什么意思?

生:至少2本,就是最少2本,可以比2本多。

生:我们小组汇报完毕,哪个小组有补充、评价或疑问?

生:你们小组声音洪亮,很好。

生:今天某某表现很好,进步很大。

师:通过我们小组的共同努力,出色的完成了本次的汇报任务,给你们小组加上2分。

师:刚才我们研究了把3本书放进2个抽屉中,我们列举出了所有的摆放情况,老师用表格的形式进行了总结,我们一起来看大屏幕,这种一一列举的方法在数学上成为枚举法(点击课件)。现在我们仔细观察各种摆放情况,我们需要关注的是那些抽屉呢?

生:关注每种放法中放书最多的那个抽屉。

师:有放3本的,有放2本的,还有装得更少的情况吗?所以我们得到至少放2本书。放书最多的那个抽屉一定是第一个抽屉吗?

生:不一定,还可能是第二个抽屉。

师:看来我们关注的是放书最多的抽屉至少放进了几本书,无论放哪个抽屉都是可以的。那如果现在有4本书要放进3个抽屉中,无论怎样放,总有一个抽屉至少放进了( )本数呢,赶快开动脑筋,仔细想一想吧。

师:有些同学在这么短的一个时间内每能一下子得到结论,没关系,你可以把你想到的摆放情况说出来,谁来说?

生:我想到的是第一个抽屉放4本书,第二个抽屉和第三个抽屉1本都不放。

师:这种摆法方法我们给记作(4、0、0),刚才说到了我们要关注放的最多的那个抽屉,这4本书一定放在第一个抽屉吗?还可以怎样放?

生:(0、0、4)(0、4、0)。

师:找的真有顺序,非常好,还有其它放法吗?直接把你的方法有这种形式表现出来。

生:(1、2、1),还可以是(1、1、2)(2、1、1)

师:真不错,自己就关注了放书最多的那个抽屉。继续,还有其它放法吗?

生:(1、3、0)(1、0、3)(3、1、0)。

师:我们来总结一下看看每种放法中放的最多的那个抽屉里放了几本书。

生:4本、3本、2本。

师:那现在你知道无论怎样放,总有一个抽屉至少放进了几本书了吗?

生:总有一个抽屉至少放进了2本书。

(设计意图:怎样帮助学生理解抽屉原理模型中的“不管怎么放”、“总有一个”、“至少”等词语表达的意思呢?在上述教学中,先让学生动手操作、画图,找出“把3本书放进2个抽屉里”的所有分放方法,目的是让学生真正体会并得到所有的分放方法。接着,通过教师的追问,引导学生体会、理解“不管怎么放”、“总有一个”、“至少”的含义,为自主探究解决问题扫清了障碍。)

2、运用假设法探究原理

师:除了这种一一列举的方法之外,谁还有不同的方法。如果书和抽屉的数量在多一些,你们感觉这种一一列举的方法怎么样?

生:太麻烦。

师:我们研究的是在每种摆放情况中放书最多的那个抽屉里至少放进了几本书。怎样能使这个放得最多的抽屉里尽可能的少放?先独立思考,有了想法后,对学的2个人可以先交流一下。

生:平均着放。

师:把你的想法说的具体些。

生:先把书平均着放,每个抽屉里放一本,然后剩下的1本再放进其中一个抽屉里。

(师根据学生回答演示摆放的过程)

师:为什么要先平均分?

生3:因为这样分,只分一次就能确定总有一个抽屉至少有几本书了。

师:好!先平均分,每个抽屉里放1本,余下1本,不管放在哪个抽屉里,一定会出现总有一个抽屉里至少有――

生:2本书。

师:你们感觉这种方法怎么样。

生:好。

师:好在哪?

生:快。

师:这个办法真是妙,只分一次就能确定总有一个抽屉至少有几本书了。

谁能用除法算式表示出刚才的思考过程呢?

生:4÷3=1(本)……1(本) 1+1=2(师板书:)

师:你能解释算式中每个数的意义吗?

生:4是书的本数,3是抽屉数,把4本数平均放入3个抽屉,每个抽屉中是1本,即商是1,还剩下1本,就可以随意放进任何一个抽屉,因此必定有一个抽屉至少有2本书。

师:也就是说被除数是我们所要分的物体的个数,除数是抽屉的个数。上面是4本书放入3个抽屉,如果是7本书放进3个抽屉中,又将得到怎样的结果呢?你能用最快的方法告诉大家吗?

生:7÷3=2(本)……1(本),每个抽屉至少放进了2+1=3本书。

师:我们来看一下大屏幕,课件演示分的过程。

(反思:在交流时,抓住两种方法的本质和关键加以引导,并进行归纳提炼,使学生初步感受和体验枚举法与假设法的不同。将假设法最核心的思路用“有余数除法”形式表示出来,将思维过程与数学符号联系起来,体现了数学的简洁美,并为后面发现规律埋下伏笔。)

师:仔细观察这2个算式,你发现了什么?

预设:用书的本数÷抽屉数=商……余数,至少数等于商加1,至少数等于商加余数。

师:我们通过把4本数放进3个抽屉,和把7本数放进3个抽屉得到了至少数等于商加余数这个结论,那这个结论是否是否适用于所有的情况呢?如果用不同的书的数量和抽屉数又将得到怎样的结论呢?

请看老师给出的小组探究要求:小组商量确定好书的本数,抽屉的个数(书的本数要比抽屉的个数多,为了研究方便,要化繁为简,尽量选择小于20的数字进行研究,而且书的本数和抽屉书不成倍数关系)记录能最快得出结论的一种放法;总结得出的结论。

完成课上尝试小研究。

小组选取代表进行汇报:教师进行板书。

预设:对于余数不为1的情况可能产生分歧:比如5÷3=1本……2(本),有的同学可能认为总有一个抽屉至少放1+1=2本书,有的同学可能认为总有一个抽屉至少放1+2=3本书,教师要组织学生进行讨论。

生1:“总有一个抽屉里的至少有3本”只要用5÷3=1(本)……2(本),用“商+ 2”就可以了。

生3:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

生:用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

师:看来,真理确实是越辩越明!同学们的这一发现,称为“抽屉原理”。也就是把m个物体任意放进n个空抽屉里(m>n,n是非0的自然数),如果m÷n=b……c,那么一定有一个抽屉中至少放进了多少个?

生:至少放进了“b+1”个物体。

师:课前的时候有人提问:什么是抽屉原理,现在你知道了吗?你知道抽屉原理最先是由谁发明的吗?我们来看大屏幕。“抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。(课件呈现资料)

(反思:余数不为“1”时,余下的物体怎么分是学生学习的难点。教学中,给予学生充足的思考时间和探索空间,让学生充分发表见解,使学生从本质上理解了“抽屉原理”,有效地突破了难点。通过背景知识的介绍,激发学生热爱数学的情感和勇于探究的精神。)

(六)巩固练习。

1、解释炫我2分钟中的魔术现象。

师:有人在课前的时候提到“抽屉原理”与溪纯变的魔术有什么关系呢?你现在能解释“为什么抽到的5张牌中至少有2张是同一花色的”吗?这道题中又是把谁看成了书,谁看成了抽屉呢?有几个抽屉呢?

生:把5张牌看成书,把4种花色看成4个抽屉,5÷4=1……1,所以至少有2张牌是同一花色的。

拓展:一副扑克牌,拿出大小王之后,至少抽出多少张才能保证2张牌大小相同。

师:原来这么神秘的魔术应用的就是一个数学原理:抽屉原理。那抽屉原理还有哪些用处呢?

2、43名师生中至少有几人在同一月出生。

师:我们班一共有43名同学,至少有几人在同一个月出生呢?

生:43÷12=3……7,至少有4人同一个月生日。

师:在这道题中又是把谁看成了书,谁看成了抽屉呢?有几个抽屉呢?

生:把43个人看成了书,12月看成了12个抽屉。

师:我们又一次体会到了抽屉原理的应用,接下来老师要加大难度了,敢迎接挑战吗?

3、一个袋子中放着红黄蓝绿4中颜色的球各若干个,至少摸出几个才能保证有2个同一种颜色的球?

师:先猜一猜。

生试着猜测。

师:这道题属于抽屉原理吗?求得又是抽屉原理的哪一项呢?在这道题中又是把谁看成了书,谁看成了抽屉呢?有几个抽屉呢?

生:4种颜色的球是4个抽屉,求的是( )÷4=1……1

师:说的真好,看来这类摸球问题也属于抽屉原理,你们可真是火眼金睛呀。

(七)总结收获。

通过这节课的学习,你有什么新的收获?

师:以上就是本节课的内容,同学这节课的学习,你们有什么新的收获呢?

这节课我们学习了抽屉原理,知道了可以用一一列举的方法,也可以用平均分的方法,这种方法更加的简捷、快速,我们还体会到了生活中很多现象可以用抽屉原理来解释,课下的时候继续思考生活中哪些现象可以用抽屉原理来解释,写在你的数学日记中。

上一篇:戒指美好的句子下一篇:员工个人入职转正申请书20