平行线的证明(精选15篇)
1.平行线的证明 篇一
平行线的证明
一.知识导学
本节是以一个公理作为基础,从而推出两个定理。
公理:同位角相等,两直线平行。
定理:同旁内角互补,两直线平行。
定理:内错角相等,两直线平行。
以上定理说明,在现阶段,我们证明两条直线平行的方法有三种。
二、例题:
例1.已知如图,指出下列推理中的错误,并加以改正。
(1)∵∠1和∠2是内错角,∴∠1=∠2,(2)∵∠1=∠2,∴AB//CD(两直线平行,内错角相等)
分析:根据“三线八角”的概念,对(1),(2)可从内错角的条件入手。
解:(1)因为没有直线CD//AB的条件,不能得出内错角∠1,∠2相等的结论。
(2)理由填错了,应改为:
∵∠1=∠2,∴CD//AB(内错角相等,两直线平行)
例2.如图,∠1=∠2,∠3=∠4,试问EF是否与GH平行?
分析:要判断EF与GH是否平行,只要能找到与EF,GH有关的一对角(同位,内错,同旁内角都可以)相等或互补即可。
解:∵∠1=∠2(已知)又∵∠CGE=∠2(对顶角相等)
∴∠1=∠CGE(等量代换)
又∵∠3=∠4(已知)
∴∠3+∠1=∠4+∠CGE(等量加等量,其和相等)
即∠MEF=∠EGH,∴EF//GH(同位角相等,两直线平行)。
说明:本题解答过程就是一种推理过程,每一步因果关系分明。由因导果的依据要在式子后面的括号内写明了。此题属于平行线判定类型。
例3.如图写出能使AB//CD成立的各种题设。
分析:应先找和AB,CD这二条直线有关的第三条截线所组成的“三线八角”来判定AB//CD。
解:使AB//CD成立的题设有:
(1)根据同位角相等,判定两直线平行有:∠EAB=∠EDC,∠FDC=∠FAB
(2)根据内错角相等,判定两直线平行有:∠3=∠4或∠7=∠8。
(3)根据同旁内角互补,判定两直线平行有:∠BAD+∠ADC=180°或∠ABC+∠BCD=180°。
例4.已知如图,AB//CD,∠1=∠3,求证:AC//BD。
分析:因为本题是判定两条直线平行的,应选用平行线的判定,应从给定的条件中去寻找角的关系,因为AB//CD,所以可知∠1=∠2,又因为∠1=∠3,可推出∠2=∠3,能判定AB与CD平行。
证明:∵AB//CD(已知)
∴∠1=∠2(两直线平行内错角相等)
又∵∠1=∠3(已知)
∴∠2=∠3(等量代换)
∴AC//BD(同位角相等,两直线平行)。
例5.已知如图∠1=∠2,BD平分∠ABC,求证:AB//CD
证明:∵BD平分∠ABC(已知)
∴∠2=∠3(角平分线定义)
∵∠1=∠2(已知)
∴∠1=∠3(等量代换)
∴AB//CD(内错角相等两直线平行)。
例6.如图,已知直线a,b,c被直线d所截,若∠1=∠2,∠2+∠3=180°,求证:a∥c
分析:运用综合法,证明此题的思路是由已知角的关系推证出两直线平行,然后再由两直线平行解决其它角的关系。∠1与∠7是直线a和c被d所截得的同位角。须证a//c。
法
(一)证明:
∵d是直线(已知)
∴∠1+∠4=180°(平角定义)
∵∠2+∠3=180°,∠1=∠2(已知)
∴∠3=∠4(等角的补角相等)
∴a//c(同位角相等,两直线平行)
法
(二)证明:
∵∠2+∠3=180°,∠1=∠2(已知)
∴∠1+∠3=180°(等量代换)
∵∠5=∠1,∠6=∠3(对顶角相等)
∴∠5+∠6=180°(等量代换)
∴a//c(同旁内角互补,两直线平行)
说明:从以上几例我们可以发现,证明两条直线平行,必须紧扣两直线平行的条件,往往归结于求证有关两个角相等,根据图形找出两直线的同位角、内错角或同旁内角,设法证明这一组同位角或内错角相等,或同旁内角互补。
2.平行线的证明 篇二
一、利用定义证明
直线与平面平行的定义:直线与平面没有公共点.即只要证明线与面无公共点即可.此类问题通常利用反证法来证明.由于直线与平面的位置关系只有三种: (1) 线在面内, (2) 线面相交, (3) 线面平行, 排除了前两种情况就只有线面平行.
二、利用直线与平面平行的判定定理证明
根据判定定理, 要证明线面平行关键是找到两条平行线 (面外一条, 面内一条) , 而两条直线平行的证明方法主要依据有:
1.平行公理.
2.三角形中位线定理.
3.平行线分线段成比例或相似三角形对应边成比例.
4.平行四边形对边平行.
5.面面平行及线面垂直的性质等.
三、利用面面平行的性质
如果条件允许的情况下能得到两个平面平行, 那么根据面面平行的性质我们就能得到线与线平行.
四、空间向量法
一般首先建坐标系, 求出这个平面的法向量, 证明这个法向量与那条直线的方向向量垂直.
例如图, 在底面是菱形的四棱锥P-ABCD中, ∠ABC=60°, PA=AC=a, PB=PD=, 点E在PD上且PE∶ED=2∶1, 在棱PC上是否存在一点F, 使BF∥平面AEC?证明你的结论.
解以A为坐标原点, 直线AD, AP分别为y轴, z轴, 过A点垂直平面PAD的直线为x轴, 建立空间直角坐标系 (如图) , 由题设条件, 相关各点的坐标分别为A (0, 0, 0) ,
设平面AEC的法向量为n= (x, y, z) , 则由题意可知,
设点F是棱PC上的点,
以上是证明直线与平面平行的几种方法, 前几种方法主要是线线与线面的相互转化等问题, 而最后一种向量的方法较其他方法应用的较少, 但在能建立空间直角坐标系的情况下, 用向量证明是一种行之有效的好方法.
摘要:高中立体几何教学属数学教学中的重点, 其中直线与平面的关系是高中立体几何的基础, 本文就直线与平面的平行关系进行如下叙述.
3.平行线的证明 篇三
这里以人教版一年级下册“找规律”为例,见下图:
这里的一个“应”字,就是不妥当的。它意味着找的规律只有一种(两个一组间隔出现),第一排的第10面旗只能是黄色,即“红、黄、红、黄、红、黄、红、黄、红,黄”。
小学数学界一向认为,此题的答案非“黄”不可,必须让学生无条件地接受“两两间隔”这一规律。这妥当吗?
事实上,我们可以找到许多其他的规律,使得第10面旗是“红”。
例1:(9个一组,周期重复)于是第9、第10;第18、第19,连续两面都是红旗,即:
红、黄、红、黄、红、黄、红、黄,红;红、黄、红、黄、红、黄、红、黄,红;红、黄、红、黄、红、黄、红、黄,红;红,……
例2:(10个一组,最后两面都是红旗)第9、10、11连续地出现三面红旗,即:
红、黄、红、黄、红、黄、红、黄,红,红;红、黄、红、黄、红、黄、红、黄、红、红;红、黄、红、黄、红、黄、红、黄,红,红;红……
你能说这不是规律吗?
实际上,找规律问题是一个开放性问题。任何一个有限序列,都可以生成无限的多种的规律。认为只有一个规律,推断出“必须是什么”和“应该是什么”,把开放题封闭成一个唯一答案的题目,在数学上是不对的。
有人说,小学生只能找最简单的一种,多种规律是以后的事情。这可以理解。但问题在于,小学数学的大量课件、教师用书都没有指出这是一个开放性问题。有些文章在讨论,重复几次才算“规律”,更是误导。
怎么办?只要改一个字:把“后面一个应是什么”改成“后面一个会是什么”就可以了。“应”和“会”一字之差,意义完全不同。苏步青先生在指导中小学教材编写时,提出“混而不错”的原则。用在找规律的时候是,如果问“会是什么”,其答案可以有许多种,其意义比“应是什么”宽泛许多。至于将来在几年级将它当做一个开放性问题来处理,可以讨论,但是必须有这样一步才好。
让我们回到“三角形内角和为180度”的问题上。马建平和戎松魁两位老师的争论点,在于矩形可否定义为“四个角都是直角的四边形”。马老师认为可以,于是就认为由此可以证明三角形内角和定理,而无需平行公理。戎老师认为不可以,必须用平行四边形定义矩形,由此说明三角形内角和定理不能绕开平行公理。
笔者认为,两位老师都有对的部分,也有不对的部分。马老师觉得矩形可以定义为“有四个直角的四边形”,这是对的。但是,以为由此定义出发,可以避开平行公理来证明三角形内角和为180度,则是错的。戎老师坚持三角形内角和定理,必须使用平行公理,这是对的。但是,说矩形不能定义为“有四个直角的四边形”,则是不对的。
实际上,将矩形定义为“四个角都是直角的四边形”,完全可以。属和种差式的逻辑定义方法,并没有规定所从属的“属”必须是其外延最相近的。打个比方,要定义“杭州人”,可以说成“居住在杭州的中国人”,没有错。也就是说,并非一定要把“杭州人”定义为“居住在杭州的浙江人”,因为二者是等价的。对于矩形的“四直角”定义,一旦服从平行公理,就和“有一个角是直角的平行四边形”定义等价(如果没有平行公理,那么两者是不等价的)。
然而,如同马建平老师和许多其他文章所说的那样,可以从“四个角都是直角的四边形”出发,绕开平行公理就能够直接推出“三角形内角和为180度”,则是不可能的。理由如下。
依照四个角都是直角的矩形定义,自然得出矩形的内角和是360度,这毫无问题。矩形的对角线把矩形分为两个一样的直角三角形,只要运用平移旋转的刚体运动也可以做到。小学生也知道一点平移、旋转、对称的知识,可以直观地接受,严密地逻辑证明需要引用合同公理得出两个三角形三边相等则全等的结论,逻辑上引用就是了。于是,得到了如下的结论:“矩形对角线分成的两个直角三角形,每一个的内角和都是180度。”逻辑的正确性到此为止。问题在于,“任意的直角三角形,是不是都能成为某一个矩形用对角线分成的直角三角形?”这需要证明,不能想当然。马老师及许许多多作者都振振有词地把两者混为一谈,犯了逻辑上的错误。
换句话说,马老师等作者的所谓证明,必须从任意的“直角三角形”出发,作出一个矩形,使其成为该矩形的一半。但是没有平行公理,这是作不出来的。那个貌似正确的三角形内角和证明,这一关过不去,整个证明的逻辑链条就断裂了。
马建平老师可能会说,从已知的直角三角形出发,作一个和自身一样的直角三角形,两者拼起来就是一个矩形。这是一厢情愿。这样拼起来的四边形只有两个直角;无法证明它有四个直角,除非引进平行公理。
这就是说,想从“矩形有四个直角”作为矩形的定义出发,避开平行公理来证明三角形内角和为180度的企图,是决然不可能实现的。
马建平和戎松魁两位老师,还就此事提到“我的课堂我做主”的高度来议论。但是,由上可见,这种所谓“拔高了的教学目标”和“到初中才能学习的”内容,其实是一个错误的论证。
4.《平行线的性质》证明题练习 篇四
一、基础过关:
1.如图1,a∥b,a、b被c所截,得到∠1=∠2的依据是()
A.两直线平行,同位角相等B.两直线平行,内错角相等
C.同位角相等,两直线平行D.内错角相等,两直线平行
(1)(2)(3)
2.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()
A.互相垂直B.互相平行C.相交D.无法确定
3.如图2,AB∥CD,那么()
A.∠1=∠4B.∠1=∠3C.∠2=∠3D.∠1=∠
54.如图3,在平行四边形ABCD中,下列各式不一定正确的是()
A.∠1+∠2=180°B.∠2+∠3=180°
C.∠3+∠4=180°D.∠2+∠4=180°
5.如图4,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()
A.30°B.60°C.90°D.120°
图5 C D
(4)(5)
6.如图5,AB∥EF,BC∥DE,则∠E+∠B的度数为________.
7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB得∥();
(2)由∠CAD =∠ACB得∥();
(3)由∠CBA +∠BAD = 180°得∥()
10.如图8,推理填空:
(1)∵∠A =∠(已知),AC∥ED();
(2)∵∠2 =∠(已知),∴AC∥ED();
B D
图8
C
(3)∵∠A +∠= 180°(已知),∴AB∥FD();(4)∵∠2 +∠= 180°(已知),∴AC∥ED();
二、综合创新: 8.(综合题)如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.
10.(创新题)(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?
(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.
11.(1)如图6,已知AB∥CD,直线L分别交AB、CD•于点E、F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是()
A.60°B.70°C.80°D.90°
(6)(7)
(2)已知:如图7,AB∥DE,∠E=65°,则∠B+∠C•的度数是()A.135°B.115°C.65°D.35°
三、培优: 12.(探究题)如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=•∠5,•延长AB、GF交于点M.试探索∠AMG与∠3的关系,并说明理由.
13.(开放题)已知如图,四边形ABCD中,AB∥CD,BC∥AD,那么∠A与∠C,∠B与∠D的大小关系如何?请说明你的理由.
一、探索平移的性质
1.(1)在图1中,画图:把线段AB向左平移4格,得到线段A’B’.(2)线段AB与A’B’叫做对应线段,平移后对应线段之间的位置和数量有什么关系?,(3)点A通过平移得到点A’,点A与点A’是一组对应点.同样的,点B与B’ 是另一组
图
1A
B
对应点.用红线画出连结各组对应点的线段AA’与BB’,线段AA’与BB’之间的位置和数量有什么关系?,2.(1)在图2中,画图:把△ABC向右平移4格,得到△A’B’C’.(2)对应线段AB与A’B’、BC与B’C’、AC与A’C’ 之间的数量与位置有什么关系?,(3)点A与A’是一组对应点,点B与B’、点C与C’是对应点.用红线画出连结各组对应点的线段AA’与BB’,线段AA’与BB’之间的位置和数量有什么关系?,;再用红线画出连结各组对应点的线段CC’,线段AA’与CC’之间的位置和数量有什么关系?,;线段AA’、BB’、CC’之间的位置和数量有什么关系? 结论:如果两条直线平行,那么其中一条直线上的任意两点到的距离相等,这个距离称为.图
2A
B
C
如果两条直线平行,那么其中一条直线上的任意一点到另一条直线的垂线段的长就是平行线间的距离.平行线间的距离处处相等.三、应用平移解决实际问题
1.在长40m、宽30m的长方形地块上,修建如下的宽1m的道路,余下部分种菜,求菜地的面积.(1)如图6,有3条道路.(2)如图7,一条道路是平行四边形.(3)如图8,道路弯曲.图6
图
图
解:
5.平行线的证明单元测试题 篇五
班级
一、选择题(每题4分,共40分)
1.下列各语句中命题有()
(1)你吃过午饭了吗?(2)同位角相等;(4)红扑扑的脸蛋;(3)若两直线被第三直线所截,同位角相等,则内错角一定相等.A.1个B.2个C.3个D.4个
2.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()
C
FA
DA
B
A
1E
B
A
1C
2B
D
D
C
C
DB
A1
2D
CB
F
3.如图所示,下列条件中,能判断AB∥CD的是()
A.∠BAD=∠BCDB.∠1=∠2C.∠3=∠4D.∠BAC=∠ACD4.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于()
A.63°
A
B.62°C.55°
D
D.118
3B
C
°
D
A
第3题第4题第5题
5.如图所示,AB∥CD,AD∥BC,则下列各式中正确的是()A.∠1+∠2>∠3B.∠1+∠2=∠3C.∠1+∠2<∠3D.∠1+∠2与∠3无关
6.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.7B.22C.13D.17或22
7.在直角三角形中,其中一个锐角是另一个锐角的 2倍,则这个三角形中最小的角是()
A.15°B.30°C.60°D.90°
8.已知△ABC的三个内角,∠A、∠B、∠C满足关系式:∠B+∠C=2∠A,则此三
角形()
A.一定有一个内角是45°; B一定有一个内角是60°; C.一定是直角三角形;D.一定是钝角三角形。
9.(2013•安徽中考)如图,AB∥CD,∠A+∠E=75°,则∠C为()
A.60°B.65°C.75°D.80° 10.学习了平行线后,小敏想出了过已知直线外一点画 这条直线的平行线的新方法,她是通过折一张透明的纸 得到的,如图:
从图中可知,小敏化平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。()A.①②B.②③C.③④D.①④
二、填空题(每题4分,共32分)
第17题
C17、在△ABC中,∠ABC和∠ACB的平分线交于点I, 若 ∠A=60°,则∠
18.把一张长方形纸片如图所示折叠后,再展开,如果∠1=55°,那么∠2等于。
三、解答题
19、如图,AB∥CD,AD∥BC,∠B=50°,∠EDA=60°,求∠CDO.20、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?
de
abc21、已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.22.(6分)如图,已知AB∥CD,∠A =1000,CB平分∠ACD,求∠ACD、∠ABC的度数。
23.如图18,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?
6.平行线证明题 篇六
1.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.
2.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数
3.如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.
4.如图,△ABC中,∠BAC=90°,∠ABC=∠ACB,∠BDC=∠BCD,∠1=∠2,求∠3的度数.
5.如图,△ABC中,D,E,F分别为三边BC,BA,AC上的点,∠B=∠DEB,∠C=∠DFC.若∠A=70°,求∠EDF的度数.
6.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.
7.【问题】如图①,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=80°,则∠BEC= ;若∠A=n°,则∠BEC= .
【探究】
(1)如图②,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB.若∠A=n°,则∠BEC= ;(2)如图③,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请
说明理由;
7.平行线的性质 篇七
从数学科学本身看, 平行线的性质是几何学的基础内容, 对于它的研究推动了整个几何学的发展
一、教学目标:
1.知识技能:使学生理解平行线的性质, 能初步运用平行线的性质进行有关计算。
2.数学思考:通过本节课的教学, 培养学生的概括能力和“观察———猜想———证明”的科学探索方法, 培养学生的辩证思维能力和逻辑思维能力。
3.解决问题:通过合作学习等活动得出平行线的性质, 进一步提高学生应用已有知识解决数学问题的能力。
4.情感态度:通过师生的共同活动, 促使学生在学习活动中培养良好的合作交流和主动参与的意识, 在独立思考的同时能够认同他人。
二、教学重点:平行线性质的研究和发现过程
教学难点:正确区分平行线的性质和判定
三、教具准备:多媒体课件、三角板, 量角器
四、教学过程设计 (见下表)
五、板书设计: (略)
8.平行线的证明 篇八
一、选择题:
1.如图,能与构成同旁内角的角有()
A. 5个 B.4个 C. 3个 D. 2个
2.如图,AB∥CD,直线MN与AB、CD分别交于点E和点F,GE⊥MN,∠1=130°,则∠2等于()
A.50°B.40°C.30°D.65°
3.如图,DE∥AB,∠CAE=
1∠CAB,∠CDE=75°,∠B=65°则∠AEB是()
3A.70°B.65°C.60°D.55°
4.如图,如果AB∥CD,则19991、、之间的关系是()9
A、1800B、1800
C、1800D、2700
5.如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于()
A.180°B.360°C.540°D.720°
6.如图,OP∥QR∥ST,则下列各式中正确的是()
A、∠1+∠2+∠3=180°B、∠1+∠2-∠3=90°
C、∠1-∠2+∠3=90°D、∠2+∠3-∠1=180°
7.如图,AB∥DE,那么∠BCD于()
A、∠2-∠1B、∠1+∠2C、180°+∠1-∠2D、180°+∠2-2∠
1二、填空题:
8.把一副三角板按如图方式放置,则两条斜边所形成的钝角_______度.
9.求图中未知角的度数,X=_______,y=_______.10.如图,AB∥CD,AF平分∠CAB,CF平分∠ACD.(1)∠B+∠E+∠D=________;(2)∠AFC=________.11.如图,AB∥CD,∠A=120°,∠1=72°,则∠D的度数为__________. 12.如图,∠BAC=90°,EF∥BC,∠1=∠B,则∠
DEC=________.13.如图,把长方形ABCD沿EF对折,若∠1=50,则∠AEF的度数等于14.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=____
三、计算证明题:
15.如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.
16..如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?
17.已知:如图23,AD平分∠BAC,点F在BD上,FE∥AD交AB于G,交CA的延长线于E,求证:∠AGE=∠E。
18.如图,AB∥DE,∠1=∠ACB,∠CAB=
∠BAD,试说明:AD∥BC.219.已知:如图22,CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°,求证:DA⊥
AB.20.如图,已知∠D = 90°,∠1 = ∠2,EF⊥CD,问:∠B与∠AEF是否相等?若相等,请说明理由。
21.如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,A=D,1=2,求证:B=C.
22.已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。
23.已知:∠1=∠2,∠3=∠4,∠5=∠6.求证:AD∥
BC.25.如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明
.21、(8分)已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.
D
F
B G
26.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20,则图③中∠CFE度数是多少?(2)若∠DEF=α,把图③中∠CFE用α表示.D C F
EA
C20、(10分)观察如图所示中的各图,寻找对顶角(不含平角):
(1)如图a,图中共有___对对顶角;(2)如图b,图中共有___对对顶角;(3)如图c,图中共有___对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?
(5)若有2008条直线相交于一点,则可形成 多少对对顶角?
7、如图1所示,下列说法不正确的是()
A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段AC C.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段
A
A
D
A
B
C
B
C
B
D
DC
(1)(2)(3)
8、如图1所示,能表示点到直线(线段)的距离的线段有()
A.2条B.3条C.4条D.5条
9、下列说法正确的有()
①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个
10、如图2所示,AD⊥BD,BC⊥CD,AB=a cm, BC=b cm,则BD的范围是()A.大于a cmB.小于b cm
C.大于a cm或小于b cmD.大于b cm且小于a cm
11、到直线L的距离等于2cm的点有()
A.0个B.1个C.无数个D.无法确定
12、点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为
()
9.平行线证明题讲义 篇九
平行线证明题
1.已知:如图,AE是一条直线,O是AE上一点,OB、OD分别是∠AOC、∠EOC的平分线。求证:OB⊥OD
第1题图
2.如图,AD⊥BC,EF⊥BC,∠AMD=104°, ∠BAC=76°
求证:∠BEF=∠
ADM
第2题图第3题图
3.(1)画图:(保留画图痕迹,不写作法)
①过C点作CD⊥AB,垂足为D;
②过D点作DE∥BC,交AC于E;
③取BC的中点G,作GF⊥AB,垂足为F。
(2)用量角器量一量∠CDE和∠BGF,它们相等吗?如果相等,请加以证明。(根据画图,写出已知,求证和证明)
4.如图,已知直线AB、CD被直线EF所截,∠1=∠2,∠3=∠4,∠1+∠3=90°.求证:AB∥CD。
第4题图第5题图
5.已知:如图,AD∥BC。求证:∠B+∠C+∠BAC=180°。
6.如图已知:AD∥BC,DC∥BE,∠A=∠D。
求证:∠CBE=∠ABC。
第6题图
7.根据下列证明过程填空:
如下图,BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C
图7
证明:∵BD⊥AC,EF⊥AC()
∴∠2=∠3=90°
∴BD∥EF()
∴∠4=_____()
∵∠1=∠4()
∴∠1=_____()
∴DG∥BC()
∴∠ADG=∠C()
8.阅读下面的证明过程,指出其错误.图8
已知△ABC
求证:∠A+∠B+∠C=180°
证明:过A作DE∥BC,且使∠1=∠C
∵DE∥BC(画图)
∴∠2=∠B(两直线平行,内错角相等)
∵∠1=∠C(画图)
∴∠B+∠C+∠3=∠2+∠1+∠3=180°
即∠BAC+∠B+∠C=180°
10.平行线的证明 篇十
[片段回放]
师:刚才, 同学们明确了平移的两条直线是平行的.现在请同学们运用这一结论探索画平行线的方法.
(学生在草稿纸上紧靠三角尺随意地画了两条线)
师:请同学们思考一个问题:你们所画的两条线一定平行吗?要回答这个问题, 首先得明确随意地移动一块三角尺是否能保证平移.
生 (齐答) :不一定!
师:前面我们说起, 随意移动铝合金门窗, 原门框所在的直线与移动后门框所在的直线是平移的, 也可以说是平行的.这是为什么呢?
生1:铝合金门窗上下都有水平的槽或轨道固定, 所以随意拉一定保证平移.而移动三角尺时没有东西固定, 故不能保证平移, 也就是说所画的线不一定平行.
师:说得非常好!也可以这样说, 没有轨道固定, 只移动三角尺 (画板) 所画的两条线不一定平行.看来, 用三角尺画平行线必须借助“轨道” (生说) .
师:请同学们再思考一个问题:用三角尺画平行线必须借助几条“轨道”呢?
生2:2条.
生3:1条.
师:请各自说说理由.
生2:因为铝合金门窗有上下2条轨道, 所以用三角尺画平行线必须借助2条“轨道”.
生3:铝合金门窗有2条轨道, 既保证了牢固, 又保证了拉动过程的平移.而用三角尺画平行线已经放在桌面上或黑板面上, 只需一边紧靠“轨道”就可以了.
师:多有说服力啊!轨道可以用什么代替呢?
生4:三角尺或直尺.
(接着是师生探索出画图要领后, 学生画图.从课堂反馈的情况看, 学生学习热情非常高涨, 画图的准确率十分之高)
[课后思考]
案例中的画图教学, 为什么能凸显生动有趣, 效果理想呢?究其原因在于:
一是“生活原型”的发现激发了学生学习的内在动机.布鲁纳指出:“使儿童的认知活动有效的问题, 多半在于应让儿童摆脱周围环境所给予的奖惩的直接控制.”也就是说, 教学中应尽可能地用儿童的自我发现作为奖赏而自行进行学习的活动.上述案例, 当学生在探索和研究“紧靠随意移动的一块三角尺所画的两条直线不一定平行.而随意移动铝合金门窗, 原门框所在的直线与移动后门框所在的直线一定平行”的问题过程中, 发现了“铝合金门窗上下都有水平的槽或轨道固定, 所以随意拉一定保证平行.而移动三角尺时没有东西固定, 故不能保证平行”时, 必然产生成功的喜悦, 从而使学生学习的外在动机转化为内在动机.
二是“生活原型”的巧妙迁移为画图要领的构建提供了支撑.学生数学知识的得出有两条线索, 一是从生活原型中来, 二是从数学内部演绎而来.前者往往能拉近数学与学生认知的距离, 变陌生为亲近, 变抽象为直观, 为学生探索、理解和掌握新知建立直观的表象, 从而使学生轻松学、乐于学.上述教学, 教师利用铝合金门窗上下的槽或轨道作为用画板画平行线固定的那把尺和推动画板时需紧靠固定的尺的生活原型, 不仅使学生不费劲地得出了画图的要领: (1) 准备两块三角尺 (或一块三角尺、一块直尺) , 其中一块作固定, 另一块作画板, 画板紧靠固定的三角尺 (或直尺) ; (2) 沿着画板的边画一条直线; (3) 把画板平移后, 再画另一条直线, 而且帮助学生理解了画图时需有一把固定的尺和推动画板时要紧靠固定的尺的缘由.
11.相交线平行线证明题 篇十一
如果AE是直线,那么不用想拉,呵呵,直接E点就是C点了。
由于可以是曲线,所以才有了其他不同的选择,因为用线围图形的时候,相等面积时候,圆所需要的线最少,知道吧。
不过这里不需要求出来最小是多少,所以不管它是不是圆弧拉,但我们可以得到它与正方形边上的交点肯定没达到C,第一种情况:E在CB或者CD上,显然正方形对称只考虑一种就可以了,不妨设它在CB上,先不管AE是什么样的曲线,我们连接AE,肯定的知道AE是比线段AE长,(两点之间线段最断嘛)。
因为三角形ABE当中AE是斜边,所以很容易得到:
曲线AE>线段AE>AB=2
第二:E在AB或者AD上的情况,同样只考虑在AB上,也不管AE是什么东东,哈哈。
在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,曲线AE=曲线AF+曲线EF>线段AF+线段EF
三角形AEF中,AF+EF>AB,不用说了吧。三角形两边和大于第三边。
所以
曲线AE>AB=2
其实,有需要的时候,我们可以把AE的最小值算出来的,在这里我就不罗嗦拉
证明:因为∠1与∠3互补
所以DE//BC
所以∠1=∠4(两直线平行,同位角相等)
所以∠2=∠4(对顶角相等)
所以∠1=∠2(等量代换)
(电脑打不出“因为”,“所以:,在写证明过程中,将因为和所以改成三个点的样子)
第二:E在AB或者AD上的情况,同样只考虑在AB上,也不管AE是什么东东,哈哈。
在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,曲线AE=曲线AF+曲线EF>线段AF+线段EF
三角形AEF中,AF+EF>AB,不用说了吧。三角形两边和大于第三边。
所以
曲线AE>AB=2
其实,有需要的时候,我们可以把AE的最小值算出来的,在这里我就不罗嗦拉
证明:因为∠1与∠3互补
所以DE//BC
所以∠1=∠4(两直线平行,同位角相等)
所以∠2=∠4(对顶角相等)
所以∠1=∠2(等量代换)
12.相交线和平行线证明 篇十二
一、选择题(每题3分,共45分)
1.如图(1)下列条件中,不能判断直线l1∥l2的是()
A.∠1=∠3B.∠4=∠5C.∠2+∠4=180°D.∠2=∠3
2.如图(2),AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()A.5个B.4个C.3个D.2个
(1)(2)(3)
3.同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()
A.a∥bB.b⊥dC.a⊥dD.b∥c
4.如图(3),能判断直线AB∥CD的条件是(A、∠1=∠2B、∠3=∠4)C、∠1+∠3=180°D、∠3+∠4=180°
5.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是().A.相等B.互余或互补C.互补D.相等或互补
6.如下图,点E在BC的延长线上,下列条件中不能判定AB∥CD的是().A.∠3=∠4B.∠1=∠
2C.∠B=∠DCED.∠D+∠DAB=180°
7.如果两条直线被第三条直线所截,那么一组内错角的平分线()
A、互相垂直B、互相平行C、互相重合D、以上均不正确
8.如果两条平行线被第三条直线所截,那么同位角的平分线()
A.互相平行B.互相垂直C.交角是锐角D.交角是钝角
9.如图,图中∠1与∠2是同位角的是()
⑴⑵
⑶⑷ A、⑵⑶B、⑵⑶⑷C、⑴⑵⑷D、⑶⑷
10.如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=()
A、10°B、15°C、20°D、30° D
11.已知,如图,BE、CD交于点A,DE∥BC,∠DEB与∠BCD的平分线交于点F,则∠F为()
A.180(BD)
B.D
1B
2C.B
D2
BD
2D.12、在同一平面内,两条直线的位置关系可能是()。
A、相交或平行B、相交或垂直C、平行或垂直D、不能确定
13、如图,下列说法错误的是()。
A、∠A与∠C是同旁内角B、∠1与∠3是同位角C、∠2与∠3是内错角D、∠3与∠B是同旁内角
14、三条直线相交于一点,构成的对顶角共有()。A、3对B、4对C、5对D、6对
15、如图,∠1=20°,AO⊥CO,点B、O、D在同一直线上,则∠2的度数为()。A、70°B、20°C、110°D、160° 二.填空题(每空1分。共10分)
100,则2_______。
1、如图⑤,已知a//b,若150,则2_______;若3=
c
ab
D
图⑤
B
(2)
C
第1题图第2题图第3题图第题图、如图(2),如果AB∥CD,BC∥AD,∠B=50°,则∠D=_______;
3、如图,已知AB∥CD,EF
⊥CD,FG平分∠EFD,则∠1与∠2的大小关系为_______。
4、如图10,直线a∥b,且∠1=28°,∠2=50°,则∠ABC=_______。
5、如图,一张宽度相等的纸条,折叠后,若∠ABC=120°,则∠1的度数为_____。
第5题图第6题图第7题图第8题图
6、如图,CD⊥AB于D,DE∥BC,∠1=∠2,则FG与AB的位置关系是_____。
7、如图,AB∥EF,BC∥DE,则∠E+∠B的度数为________.
8、如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°则∠AOC=,∠COB=。
三.解答题(每题5分,共45分)
1、如图所示,AB∥ED,∠B=48°,∠D=42°, BC垂直于CD吗?下面给出两种添加辅助线的方法,请选择一种,对你作出的结论加以说明.
6、已知;如图AB // ED求证 B + BCD + D = 360°
7、如图,已知:AD⊥BC,EF⊥BC,∠E=∠AGE。求证:AD平分∠BAC。
8、如图,已知C是线段AB上的一点,ADDC⊥CE。
13.平行线的证明 篇十三
无论采用什么教学方法, 教师无一例外地都强调“三角尺的一条直角边与已知直线完全重合, 直尺靠紧另外一条直角边”, 这一根深蒂固的方法, 除了因为教师自己也是这样学的, 还有一部分原因是因为教材也是这样编写的, 教师对教材的无条件服从也导致了这一现象的发生。
但是, 一个学生在课堂上不经意的一句话, 颠覆了很多教师对“画平行线”的认识。
一、情景回放
一名教师按照“教师示范画法—学生表达过程—师生总结步骤—学生尝试练习”的常规课堂模式执教这节课。同时也强调:要利用三角尺的直角边。前面环节风平浪静, 但是在学生尝试练习环节, 一个学生突然高高地把手举起:“老师, 我不用直角边也能画出平行线!非得用直角边画吗?”很明显, 这个学生的问题超出了教师的课堂预设, 也大大出乎听课教师的预料, 但教师采取了回避的态度:“你很有探索精神, 老师很欣赏你。”只评价了学生的学习态度, 而未对方法作出肯定。
评课环节中, 经过静心思考, 教师都一致认为, 一句“非得用直角边画吗”中, 藏着非常可贵的数学思想的火花。这个学生首先善于思考, 其次敢于质疑, 这是在很多数学教师身上都没有的数学品质。
基于学生的问题, 笔者也对“画平行线”进行了深入研究。下面是现行三个主要版本教材中所呈现的“画平行线”的过程。
可以看出, 在各版本教材呈现图中, 虽然用以作为平移标尺的工具不同 (人教版和苏教版用的是直尺, 北师大版用的是两块三角尺中的其中一块) , 但是, 在画平行线的主要步骤中, 都是利用三角尺的一条直角边与已知直线完全重合, 另一条直角边与平移标尺靠紧进行平移。
由学生的质问, 笔者罗列出利用三角尺画平行线的所有方法 (用直尺作为平移标尺) , 见下图。
除了方法 (1) (2) 是课本给定的方法外, 方法 (3) (4) (5) 一样可以顺利画出平行线。由于课本局限于利用三角尺的两条直角边去画, 反而会造成一些问题。
二、教学思考
【存在问题一】人为加深学习难度
“画平行线”是整个小学阶段的难点, 四年级学生还不能自如地操作两件工具, 同时, 画平行线的步骤繁多也使学生增加了记忆过程的难度。如果再一味强调要使用三角尺的两条直角边, 更是人为加深了学生的学习难度。在教学传统的用直角边画平行线的过程时, 笔者常发现很多学生手拿三角尺不停地旋转, 不知所措。这是因为四年级的学生空间观念发展不够全面, 虽然能顺利找到三角尺中的直角边, 但是当需要把直角边放在固定位置并利用另外的直角边时, 存在较大困难。教材只强调用直角边画平行线, 使原本就繁多的步骤又添上了不必要的过程, 加深了学生学习的难度, 加重了学生负担。
【教学建议】笔者进行了教学尝试, 通过引导学生利用“平移”的性质去画平行线, 而不局限于只利用直角边去画, 教学过程如下。
出示, 引导学生找平行线, 初步感知“平移能得到平行线”。
师:同学们, 刚才的题目告诉我们:三角形通过平移后对应的边互相平行。我们还可以利用刚才的重要发现画平行线呢!
师:想一想, 用这个发现画平行线, 你认为需要什么工具?
生:三角尺。
师:为什么要用三角尺?
生:因为我们可以通过三角尺的平移画出平行线。
师:只用三角尺就可以吗? (教师拿三角尺随意地挪动了一下) 这样能保证是“平移”吗?
生:还需要一个东西靠着三角尺。
生:需要一个直直的东西。
师:那这个直直的东西我们可以用什么呢?
生:可以用数学课本的边。
生:可以用三角尺。
生:可以用直尺。
师:数学课本的边、三角尺、直尺的作用是什么?
生:让三角尺沿着直的边滑动, 才能保证三角尺平移。
师:你能试着结合平移的思想用三角尺和直尺画出一组平行线来吗?
教师展示学生常见画法。
师:你能尝试总结画平行线的过程吗?
学生讨论、汇报, 教师补充, 共同总结出画平行线的步骤与方法:可以先沿三角尺的一条边画一条直线, 再用直尺贴紧三角尺的另一边, 把三角尺平移, 然后仍沿三角尺的原来一边画一条直线。
师:恭喜同学们, 利用自己灵活的大脑不仅研究出那么多画平行线的方法, 还知道为什么要这样画。下面, 我们通过一道习题检验一下自己的新本领。
出示:过A点画已知直线的平行线。
笔者对学生完成情况整理反馈, 发现学生成功率高, 完成速度快, 收到了良好的效果。
【存在问题二】不能衔接后续学习
平行线有一个重要性质——“两直线平行, 同位角相等”, 反过来“同位角相等, 两直线平行”也是平行线判定的一条重要依据。同时这也是用直尺与三角尺画平行线的一个重要的理论基础。教师可以把直尺想象成与平行线相交的一条直线, 把三角形平移前后的两个内角看成平行线中的同位角。教材中, 只强调用三角尺的直角边去画平行线, 其实只考虑到“在同一平面内, 垂直于同一直线的两条直线互相平行”这一特征, 容易给学生留下“只有同位角为直角时两条直线才是互相平行”的固有印象, 影响学生的后续学习。
【教学建议】从教师与教材的角度来看, 小学阶段的教材可以说是孤立的, 小学教师一般也只从事小学阶段教学工作。但是, 对数学知识体系和学生的发展而言, 这个过程却是连贯的、持续的。如果不考虑知识与学生的发展, 会让学生产生数学不严密的误解, 这与“数学是严密的科学”的本质是相悖的, 同时也会造成不必要的教育资源浪费。
对于学生所掌握的“画平行线”的方法来说, “平移可以得到平行线”是重要的;同位角相等, 两条直线平行的数学结论是重要的;非得利用三角尺的两条直角边画平行线是不重要的。所以, 对于“画平行线”的教材安排, 笔者的粗浅建议是:画平行线有方法, 但不要拘泥于一种方法。
14.平行线与相交线证明题专项 篇十四
二、两组平行线的证明题【找出连接两组平行线的角】
1.已知:如图,CD平分∠ACB,AC∥DE,∠DCE=∠FEB,求证:EF平分∠DEB.
1、如图已知,AB∥CD.AF,CF分别是EAB、ECD的角平分线,F是两条角平分线的一、平行线之间的基本图 交点;求证:F
1B
2AEC.E F
C
D
B2、已知AB//CD,此时A、AEF、EFC和C的关系又如何?你能找出其中的规律吗? E
D3、将题变为如下图:AB//CD此时A、AEF、EFD和D的关系又如何?你能找出其中的规律吗?
CD4、如图,AB//CD,那么A、C与AEC有什么关系? E
C
D
E
C E B3、已知:如图
2-96,DE⊥AO于E,BO⊥AO,FC
⊥AB于C,∠1=∠2,求证:DO⊥AB.三、两组平行线构造平行四边形
1.已知:如图,AB是一条直线,∠C = ∠1,∠2和∠D互余,BE⊥FD于G. 求证:AB∥CD .
2、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.
D
F
42A
(第22B 题)
C
五、寻找角之间的关系
1、如图2-97,已知:∠1=∠2,∠3=∠4,∠5=∠6.求证:AD∥BC.2、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。求证: AD∥BE。D
3.如图12,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°.求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.
六、翻折
图10
3、如图,M、N、T和A、B、C分别在同一直线上,且∠1=∠3,∠P=∠T,求证:∠M=∠R。
四、证特殊角
1、AB∥CD,∠BAC的平分线和∠ACD的平分线交于点E,则∠AEC的度数是.
图7 图82、AB∥CD,直线EF与AB、CD分别相交于E、F两点,EP平分∠AEF,过点F作 PFEP垂足为P,若∠PEF=30,则∠PFC=_____.
3、如图,已知:DE∥AC,CD平分∠ACB,EF平分∠DEC,∠1与∠2互余,求证:DG∥EF.A1、如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和
为.
2、如图(1),已知矩形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为C′,若
D
5.如图已知直线a∥b,AB平分∠MAD,AC平分∠NAD,DE⊥AC于E,求证:∠1=∠2.
ADC′=20°,则∠DBC=的度数为。
1题)
C
第16题
4、如图,在Rt△ABC中,∠C=90°,∠A=20°按图中所示方法将△BCD沿BD折叠,使点C落
在边AB上的点C′处,则∠BDC=__________.
6.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20,则图③中∠CFE度数是多少?
(2)若∠DEF=α,把图③中∠CFE用α表示.图
D F C
15.平行线的证明 篇十五
1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。()
2.如图①,如果直线l1⊥OB,直线l2⊥OA,那么l1与 l2一定相交。()
3.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)()
二.填空题:
1.如图③ ∵∠1=∠2,∴_______∥________()。∵∠2=∠3,∴_______∥________()。
2.如图④ ∵∠1=∠2,∴_______∥________()。∵∠3=∠4,∴_______∥________()。
3.如图⑤ ∠B=∠D=∠E,那么图形中的平行线有________________________________。
4.如图⑥ ∵ AB⊥BD,CD⊥BD(已知)
∴ AB∥CD()
又∵∠1+∠2 =180(已知)
∴ AB∥EF()
∴ CD∥EF()
三.选择题:
1.如图⑦,∠D=∠EFC,那么()
A.AD∥BCB.AB∥CD
C.EF∥BCD.AD∥EF
2.如图⑧,判定AB∥CE的理由是()
A.∠B=∠ACEB.∠A=∠ECDC.∠B=∠ACBD.∠A=∠ACE
3.如图⑨,下列推理错误的是()
A.∵∠1=∠3,∴a∥bB.∵∠1=∠2,∴a∥b
C.∵∠1=∠2,∴c∥dD.∵∠1=∠2,∴c∥d
4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()
A.①③B.②④C.①③④D.①②③④
四.完成推理,填写推理依据:
1.如图⑩ ∵∠B=∠_______,∴ AB∥CD()∵∠BGC=∠_______,∴ CD∥EF()
∵AB∥CD,CD∥EF,∴ AB∥_______()
2.如图⑾ 填空:
(1)∵∠2=∠3(已知)
∴ AB__________()
(2)∵∠1=∠A(已知)
∴__________()
(3)∵∠1=∠D(已知)
∴__________()
(4)∵_______=∠F(已知)
∴AC∥DF()
3.填空。如图,∵AC⊥AB,BD⊥AB(已知)
∴∠CAB=90°,∠______=90°()∴∠CAB=∠______()∵∠CAE=∠DBF(已知)∴∠BAE=∠______
∴_____∥_____()4.已知,如图∠1+∠2=180°,填空。
∵∠1+∠2=180°()又∠2=∠3()
∴∠1+∠3=180°
∴_________()
五.证明题
1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE
2.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。
3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。
.已知:如图,求证:EC∥DF.,且
.5.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.
6.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.
D 图10 F
图
E B P
Q
D
C
B
A C
7.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。
求证:GH∥MN。
8.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。
【平行线的证明】推荐阅读:
平行线相交线证明09-18
立体几何证明平行专题07-07
平行线的性质讲义08-24
初一数学平行线的判定10-11
“平行线的认识”教学设计07-08
八年级数学:平行线的判定08-01
平行线的判定说课稿10-31
平行线的判定和性质专题练习10-31
《10.3平行线的性质》的教学反思08-29
平行线周记10-16