二次根式拓展练习(共10篇)
1.二次根式拓展练习 篇一
I.二次根式的定义和概念:
1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式.当a>0时,√a表示a的算数平方根,√0=0
2、概念:式子√ā(a≥0)叫二次根式.√ā(a≥0)是一个非负数.II.二次根式√ā的简单性质和几何意义 1)a≥0;√ā≥0 [ 双重非负性 ] 2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式] 3)√(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论.III.二次根式的性质和最简二次根式 1)二次根式√ā的化简 a(a≥0)√ā=|a|={-a(a<0)2)积的平方根与商的平方根 √ab=√a·√b(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)3)最简二次根式 条件:
(1)被开方数的因数是整数或字母,因式是整式;
(2)被开方数中不含有可化为平方数或平方式的因数或因式.如:不含有可化为平方数或平方式的因数或因式的有√
2、√
3、√a(a≥0)、√x+y等;
含有可化为平方数或平方式的因数或因式的有√
4、√
9、√a^
2、√(x+y)^
2、√x^2+2xy+y^2等 IV.二次根式的乘法和除法 1 运算法则
√a·√b=√ab(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)
二数二次根之积,等于二数之积的二次根.2 共轭因式
如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式.V.二次根式的加法和减法 1 同类二次根式
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2 合并同类二次根式
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式.3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并
Ⅵ.二次根式的混合运算 1确定运算顺序 2灵活运用运算定律 3正确使用乘法公式 4大多数分母有理化要及时 5在有些简便运算中也许可以约分,不要盲目有理化 VII.分母有理化 分母有理化有两种方法 I.分母是单项式
如:√a/√b=√a×√b/√b×√b=√ab/b II.分母是多项式 要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b 如图
II.分母是多项式 要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b
2.二次根式教案 篇二
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,<,>”;②单个的数字或单个的字母也是代数式
5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数的最小值为5.)
6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)
7.解:(1) . (2)宽:3 ;长:5 .
8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.
9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.
10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.
解:乙的解答是错误的.因为当a=时,=5,a-<0,所以 ≠a-,而应是 =-a.
本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.
在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.
在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.
练习(教材第4页)
1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.
2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.
习题16.1(教材第5页)
1.解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义. (2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义. (3)欲使有意义,则必有5a≥0,∴a≥0,∴当a≥0时,有意义. (4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义.
2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.
3.解:(1)设圆的半径为R,由圆的面积公式得S=πR2,所以R2=,所以R=± .因为圆的半径不能是负数,所以R=-不符合题意,舍去,故R= ,即面积为S的圆的半径为 . (2)设较短的边长为2x,则它的邻边长为3x.由长方形的面积公式得2x3x=S,所以x=±,因为x=-不符合题意,舍去,所以x=,所以2x=2=,3x=3=,即这个长方形的相邻两边的长分别为和.
4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.
5.解:由题意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合题意,舍去,∴r=,即r的值是.
6.解:设AB=x,则AB边上的高为4x,由题意,得x4x=12,则x2=6,∴x=±.∵x=-不符合题意,舍去,∴x=.故AB的长为.
7.解:(1)∵x2+1>0恒成立,∴无论x取任何实数,都有意义. (2)∵(x-1)2≥0恒成立,∴无论x取任何实数,都有意义. (3)∵即x>0,∴当x>0时, 在实数范围内有意义. (4)∵即x>-1,∴当x>-1时,在实数范围内有意义.
8.解:设h=t2, 则由题意,得20=×22,解得=5,∴h=5t2,∴t= (负值已舍去).当h=10时,t= =,当h=25时,t= =.故当h=10和h=25时,小球落地所用的时间分别为 s和 s.
9.解:(1)由题意知18-n≥0且为整数,则n≤18,n为自然数且为整数,∴符合条件的n的所有可能的值为2,9,14,17,18. (2)∵24n≥0且是整数,n为正整数,∴符合条件的n的最小值是6.
10.解:V=πr2×10,r= (负值已舍去),当V=5π时, r= =,当V=10π时,r= =1,当V=20π时,r= =.
如图所示,根据实数a,b在数轴上的位置,化简:+.
〔解析〕 根据数轴可得出a+b与a-b的正负情况,从而可将二次根式化简.
解:由数轴可得:a+b<0,a-b>0,
∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.
[解题策略] 结合数轴得出字母的取值范围,再化简二次根式,此题体现了数形结合的思想.
已知a,b,c为三角形的三条边,则+= .
〔解析〕 根据三角形三边的关系,先判断a+b-c与b-a-c的符号,再去根号、绝对值符号并化简.因为a,b,c为三角形的三条边,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.
[解题策略] 此类化简问题要特别注意符号问题.
化简:.
〔解析〕 题中并没有明确字母x的取值范围,需要分x≥3和x<3两种情况考虑.
解:当x≥3时,=|x-3|=x-3;
当x<3时,=|x-3|=-(x-3)=3-x.
[解题策略] 化简时,先将它化成|a|,再根据绝对值的意义分情况进行讨论.
5
O
3.二次根式教案设计 篇三
一:教学内容分析
本节课是人教版九年级上册第21章二次根式第一节二次根式第一课时的内容,它是前面学习的数的开方的后继学习,也是学习二次根式的运算的基础,他在整个初中阶段起着重要的作用,贯穿始终,为后继学习打下夯实的基础。二:学生情况分析
本节课是在数的开方的有关知识的基础上展开的,有了一定知识基础,并且在勾股定理中有所运用,他们并不陌生,所以只要我们连接好新旧知识,学生很容易接受,加强新旧知识的联系,化为知为已知。
三、教学目标:
1.知识与技能
(1)理解二次根式的概念.(2)二次根式有意义的判定.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出二次根式概念.
(2)再对概念的内涵进行分析,得出二次根式成立的条件,并运用这一条件进行二次根式有意义的判断.
3.情感、态度与价值观
通过本节的学习培养学生:准确归纳概念的科学精神,经过探索二次根式是否有意义,发展学生观察、分析、发现问题的能力.
四、教学重难点
1.重点:形如(a≥0)的式子叫做二次根式的概念; 2.难点:利用“(a≥0)”解决具体问题.
五、教学方法
启发式教学法
六、教学过程 导入新课(问题导入)
请同学们独立完成下列三个问题: 问题1、7的算术平方根是()。
问题
2、直角三角形的两条直角边分别为5和4,斜边为()。问题
3、正方形的面积为S,则它的边长为()。推进新课 一、二次根式的定义
很明显√
7、√
41、√S都是一些正数的算术平方根。像这样一些正数的算术平方根的式子。我们就把它称为二次根式。因此,一般地,我们把形如√a(a≥0)的式子叫做二次根式,“√”称为二次根号。想一想:为什么一定要加上a≥0这一条件?
教师引导学生说出只有正数和零才有平方根,负数没有平方根。议一议:(1)-1有算术平方根吗?(2)0的算术平方根是多少?(3)当a<0时,√a有意义吗?
说明:负数没有平方根,更没有算术平方根。(4)√a表示什么含义?
目的:让学生了解算术平方根与二次根式的联系。
二、应用迁移
1、对二次根式概念的考查
下列式子,哪些是二次根式,哪些不是二次根式:
√
2、√3、1/x、√x(x≥0)、√0、-√2、1/(x+y)、√x+y(x≥0、y≥0)
分析:看是否为二次根式,关键看是否满足√a(a≥0)的形式。解:略
点拨:二次根式应满足两个条件:第一,有二次根号;第二,被开方数是非负数。
2、对二次根式被开方数范围的考查 当x为多少时,√3x-1在实数范围内有意义?
分析:有二次根式的定义可知。被开方数一定要大于或等于0,所以3x-1≥0,√3x-1在实数范围内有意义。解:由3x-1≥0,得x≥1/3,当x≥1/3时,√3x-1在实数范围内有意义。
点拨:要使二次根式有意义,必须满足被开方数要大于或等于0.三、巩固提高
1、下列式子中,是二次根式的是()A、-√7 B、三次根号7 C、√x D、x
2、当x为何值时,下列各式在实数范围内有意义?(1)√x-3 ;(2)√2/3-4x ;(3)√-5x ;(4)√/x/+1
四、本课小结 本节要掌握:
1、形如√a(a≥0)的式子叫做二次根式,“√”称为二次根号。
2、要使二次根式有意义,必须满足被开方数要大于或等于0.五、教学反思
1:本节课从旧知识引入,降低难度,激发了求知欲,和进一步探索的欲望。
2:本节课重点培养了学生的思维能力,使学生真正理解概念。3:学生用字母表示数还不熟练还有一部分同学错误认为a表示正数,-a表示负数。所以还应加强符号教学。
4.《二次根式》教学反思 篇四
本节课的教学目标之一是经历二次根式的概念的发生过程,了解二次根式的概念,所以在引入概念时我采用了类比的思想方法。首先请同学们写出一个整数、分数、无理数;再写出一个整式、分式;然后通过实际问题【
①一块面积为b+3的正方形草坪,它每条边的长为多少?
②草坪中央有一个形状为正三角形的水池,面积为,请问水池各边的长为多少?】得到这几个代数式。然后让学生观察它们在形式上有什么特征?给他们起一个什么名字呢?有一个学生说“无理式”,这样“二次根式”的概念顺理成章的就引出来了。这样得到的概念学生感觉到不陌生,也是由实际生活需要而产生的概念。
对教材中的概念的表述我做了处理,实际上就是形如这样的式子就叫做二次根式,这里的字母可以是数字,代数式。通过一个练习【选一选:下面是二次根式的是:①②③④⑤】让学生们加深对二次根式概念的理解,强调本质就是一个算术平方根。既然二次根式都可以看成数或式的算术平方根,那么根据算术平方根的意义,根号里面的数或式子必须大于或等于零。所以本节课的重点“求二次根式中字母的取值范围”学生就很好理解了,关键是实际问题中字母的`取值范围的求法。通过例题的讲解,使学生了解到实际上求字母的取值范围就是要转化成求不等式的解集问题,通过题型的概括、方法的归纳,学生基本上掌握了重点。
对于二次根式的求值,实际上就和求代数式的值的过程一样,在这里体现了转化的思想,为了学生书写规范,总结为:当、抄、代、算四个步骤,并板书示范。
5.《二次根式》教学反思 篇五
一、处理好概念、性质、运算的关系本章的基本内容是二次根式的概念、性质和运算,其中重点是二次根式的化简与运算,二次根式的概念是化简与运算的基础,二次根式的性质是化简与运算的依据。二次根式的运算是本章的重点,相应的教学要求是能熟练地进行二次根式的加、减、乘、除运算,能熟练地将分母中含有一个或两个二次根式的式子进行分母有理化。二次根式的性质是运算的依据,相应的教学要求是掌握二次根式的有关性质及运算法则。二次根式的概念是运算的基础,相应的教学要求是了解二次根式及有关概念。在实际学习中,如何对教学成果进行评估呢?关键看学生运算的熟练程度,其中,又以二次根式的混合运算为重。至于对二次根式性质的掌握,对二次根式概念的了解,都可以通过对运算的掌握加以判断和检测。
二、提高技能训练的效益首先,要明确训练的目的。对于二次根式这一章,训练的目的.主要是培养进行二次根式运算的基本技能,了解与运算有关的基础知识,从而发展能力。其次,对训练内容的选取要科学,深度、广度要适当。从本章的训练目的出发,在训练内容的选择上,一是以常用运算为主,不必专门在概念、性质上下大功夫;二是以基本技能为主,而不追求繁难式子化简、运算的特殊技巧。
第三,要改进训练方法。在实施二次根式运算的训练时,要从有理数、有理式运算与二次根式运算的区别?联系上入手,抓住问题的症结,培养独立学习、思考和解决问题的能力。总之,弄清训练目的,选准训练内容,搞活训练方法,才能提高学习质量与效益。
6.八年级数学《二次根式》 篇六
一、细心填一填(每小题3分,共30分)、1、当m时,式子3m有意义.2、若a<0,则a23、计算:31323122=.4、计算:31113,3335、长方形的一边的长是2,面积为6,则另一边的长为.6、若(a2)22a,则a的取值范围是_______.7、a230,则(a-b)2________.8、计算:(32)2005(32)2006
9、当x有最小值.10、观察下列式子:1111112,23,34,请你将猜想到的规律用含自然数33445
5n(n≥1)的代数式表示出来的是.二、精心选一选(每小题3分,共30分)
11、下列代数式中,x能取一切实数的是()A
1xB.x1CxDx2
412、化简32的结果是()
A.3B.-3C.±3D.913、若1x3,则x(x3)的值是()
A.-2B.4C.2X-4D.214、若2aa成立,则()bB.a0,b0;C.a0bD.a0 bA.a0,b0;
15、若xx6x(x6),则()
A.x≥6B.x≥0C.0≤X≤6D.x为一切实数.16、若x,y都是实数,且2x12xy0,则xy的值为()
A、0 B、0.5 C、2D、不能确定
17、下列四个等式中不成立的是()
A.212(31)
(31)(1)2(1)12B.2(23)26
C.(12)2322D.(2)23218、计算:482375的结果是()
AB.1C.5D.67519、已知x、y为实数,yx22x4,则yx的值等于()
A.8B.4C.6D.1620、若正三角形的边长为2cm,则这个正三角形的面积是()
AB.C.5D.53三、认真做一做(共40分)
21、化简或计算(每题5分,共20分)
(1)45380(2)
2 7
(3)(33)(4)(22)(322)822、已知a2,b2
3(6分),求a2bab2的值。
23、解方程:x223x(6分)
24、如图,某水坝的横断面是梯形,坝顶宽CD为8米,坝高为20米,斜坡AD的坡比为1:3,斜坡AD的坡比为1:2,求坝底AB的长(精确到0.1米)(8分)
四、努力试一试(共20分)
1、如图,数轴上表示12的对应点分别为A、B,点B关于点A的对称点C,则C点表示
2、已知m是的整数部分,n是的小数部分,则n2-
3、已知实数a、b满足4ab11
4、国庆佳节,李老师乔迁新居。一大早他就赶到家具城购买家具,当卡车装满家具后高4米、宽2.8米。这辆卡车能否通过如图所示的住宅社区大门。
7.-《二次根式》观课报告 篇七
今年暑期研修中,按照省远程研修的要求,我认真、细致、耐心的观看了四位教师的课,这些教师都认真对待本次讲课,积极准备,从备教材、备数学课程标准,备学生、备重点、备难点方面,在教学设计中设计详细,各项目书写全面,给我提供了很好的讲课蓝本,就其中一节初中数学《二次根式》谈一下自己的体会。尹老师的这节课,教学设计合理,教材与学情分析准确、全面;教学目标明确。重点、难点处理符合学生认知规律;情境与活动设计指向问题解决。教学环节相对完整、过程流畅、结构清晰;课堂容量适当。学生学习兴趣浓厚,积极主动,参与度高,在学习活动中获得良好体验,课堂气氛活跃有序。
总体来看本节课凸显学生的主体地位,以如何提高学生的证明思路分析能力为着力点,通过定理的证明、例题的引领、练习题的巩固,及时地总结提升,培养学生分析问题、解决问题的能力。从创造性地使用例题到设计变式训练、迁移训练;从设计条件开放、结论开放题,到设计条件不变、图形变化的各种训练;从展示正确证明过程到展示错误证明过程让学生评价,使学生的思维在广度和深度上得以发展,从而实现数学思维的全方位训练。这节课有以下几点很值得学习:
1、从教师教学来看,教师对课堂教学进行了精心设计,课堂结构合理,活动安排科学,能够落实分层教学,考虑全体学生。练习设计合理,有层次,有梯度,基础知识掌握在课堂上,关键性的训练完成在课堂上,问题解决在课堂上。面向全体,不同层次学生均得到发展;过程体验充分,学习能力得到提升;教学目标检测及时有效,达成度高。
2、目标明确,设置恰当,符合课程标准的要求。教学中,始终围绕目标进行,教学内容安排合理,讲授正确,课堂结构合理;
3、课堂气氛营造:针对初二学生的年龄特点,教师又适当的加入激励性的语言,激起学生的参与意识,例如:“在这一节的学习中,我们又会面临哪些挑战呢?大家想不想挑战自我?”这节课中类似这样的语言很多。张老师能做到面向全体学生,在教学中,能坚持以学生为本,面向全体学生,调动起所有学生的积极性。
4、师生双边活动:课堂上,教师让学生在讲台上讲解充分暴露学生思维中的缺点,教师及时补充更正,起到了很好的效果。师生交往既有师生的交往,又有生生的交往,发挥了学生的主观能动性,也提高了学生的智力活动水平。
5、学习方式与方法教学中开展了小组活动,活动中,小组成员对共同学习中发现的问题,利用教师所提供的材料,通过分析、比较、抽象和概括与一系列积极的思维活动,实现了认识上的飞跃,有利于培养学生的团队精神和创新能力。
观课反思:
1、多给学生以肯定性评价,对于回答的比较好的学生给以充分的表扬。
2、重视学生思维能力的培养,也要重视学习习惯等非智力因素的培养。
3、在平时的课堂教学中要安排一定时间给学生自己,放心大胆的把课堂还给学生,把时间还给学生。
4、精心设计教学内容,多设计调动学生学习积极性的内容,在备课上多下功夫。
通过观课,我学到了一些新的教学方法和新的教学理念。在这些优质课中,教师放手让学生自主探究解决问题的方法,然后都很有耐性的对学生进行有效的引导,充分体现“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。执教者的语言精练、丰富,对学生鼓励性的语言、富有亲和力的语言以及学习过程中的多种评价方式,非常值得我学习。这些授课教师都非常注重从学生的生活实际出发,为学生创设生活情景,充分发挥学生的主体作用,引导学生自主学习、合作交流的教学模式,让人人学有价值的数学,不同的人在数学上得到不同的发展,体现了新课程的教学理念。一,情境导入,提高学生的学习兴趣。通过创设情境,让学生感觉数学是有趣的。李老师用牛郎织女搭桥的喜鹊入手,让学生计算喜鹊的飞行距离,能不能完成使命的情境。学生的学习是认知和情感的结合,每一个学生都渴望挑战,渴望挑战带来的成功,成功是一种巨大的情绪力量,它能使学生产生主动求知的心理冲突.二,课堂问题设置针对性强。老师们根据课堂教学的目标和内容,在课堂教学中创设了良好的教育环境和氛围,精心设置问题情景,提问有计划性、针对性、启发性,能激发学生主动参与的欲望,有助于进一步培养学生创造性思维。在数学课堂教学中师生双方都应以主体的身份参与到教学全过程中,围绕课堂教学目标、内容,积极地、主动地提出有价值的问题,促使个体积极思维,增强提出问题、解决问题的能力,增强师生的创新意识。设问都激起了学生的思维上的探究,并且层层深入,意犹未尽。
三,重视小组合作。这几节课中都能充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确,注重了合作学习的实效性。合作学习作为一种学习方式已提出多年,但在具体的教学过程中,也只是最近几年得到老师们的重视,这六位老师在教学中,都或多或少地体现了这种方式。在观摩六位老师的课时,我也一直在思考一个问题:以怎样的形式合作比较合理?合作学习中,老师的地位如何界定?合作学习需有合作的对象,在班级形式的授课中,合作的成员以4——6人为宜,并且还要注意这些成员学习情况的差异性和互补性;作为教师,在合作学习中要根据问题的难易程度决定是否事前提出建议或要求,难度太大的问题不可直接交给学生,还可在学生的合作中参与进来,作为合作学习的一员和学生共同解决问题
课堂的主人是学生,我们对学生控制得紧,还眼盯着仅有的那么几名优秀生,应该面对全体学生,让所有学生都参与到课堂教学中,把课堂真正还给学生,让学生勤奋学,不是老师使劲教。在参与中,学生保持强烈的学习欲望,养成良好的学习习惯,书是学生学出来的,而不是老师教出来的。成就学生,也就成就了老师自己。只有学生的广泛参与,课堂教学才能走向优质高效。
今年研修学习的一个环节是观课评课,我观看了《投影》,《勾股定理》《二次根式》,《实际问题与反比例函数》,《三角形的边》,《一元一次不等式》六节课,收获很多,受益匪浅。总结如下:
一、巧妙设置问题,提高课堂效率
提问是课堂教学中必不可少的。但是,如何科学,高效的提问,确实是我们平时教学中需要研究的一个课题。通过听课,回顾自己的平时教学,确实有许多地方需要改进。
(1)设置问题应该应该贴近生活,使同学们在学习中深刻体会到学习数学的实用性,感受到数学遍布生活,从而更加明确学习数学的目的。(2)设置问题应该增强趣味性,兴趣是最好的老师。教学中设置了趣味性的问题,可以提升学生学习的热情,增强好奇心,趣味性,甚至可以将一部分不太愿意听课的同学的精力集中过来,提升课堂效果。
(3)设置问题要层层递进,适当拓宽。拓宽型提问,具激励参与意识之功能,课堂提问是传授知识的手段之一,但有时不能仅仅就知识表层设计问题,否则往往仅是书本知识的重复而使提问显得单调,可以在紧扣书本知识点的同时设计一些稍有深度的或广度的问题,其目的使学生思维发散,知识面拓宽,利用学生思维中相似、相反或相关的思绪点,抓住新概念、新知识的某些特征设计提问,引发学生深入探讨、达到向知识的深度和广度发展,促使学生直接参与新知识的挖掘与探求
二、教学要以人为本,加强学生的主体地位
(1)教学中,教师要当好组织者,引导者,保证学生学习的主体地位。我们设计每堂课时,都必须站在学生的角度去考虑,对这节课的内容,我已经知道了些什么,能接受些什么,哪些对学生来说是困难的,怎样才能使学生更容易理解、更容易接受。几位教师的教学设计都比较实用,很好的适合学生的实际情况。
(2)引导学生作好小组合作探究,对于教学中的重难点教师适时引导学生小组合作,探究,然后每组找一名学生发言,利用小组集体的优势,同学之间互相学习,带领后进生前进,(3)增加学生参与度。主要通过设置问题让学生回答、小组合作然后展示、学生小组间的评价,学生练习等体现。提升学生课堂参与度,使每一个孩子都能感受到老师对他的关怀,增加了孩子的存在感,特别是对于成绩稍弱点的同学,也能很好的调动积极性,进而提升教学成绩。
(4)练习的选取要适当,重在针对知识点的落实,不应设置难度较大的题目。通过简单、典型例题,使更多的学生参与到课堂活动中来,执教的几位教师特别注重了题目的选取,通过比较简单的题目使同学们对本堂课知识点有了深刻的理解,提高了课堂效率,增强了学习的积极性。
(5)课堂教学中教师注重对学生进行激励性评价,注重同学间的评价,即使有些同学的回答不太准确,老师也是在肯定优点的同时,对其进行鼓励或者让他再仔细考虑一下,在充分尊重学生的同时,拉近了师生间的关系,营造了和谐的氛围,为开展教与学创设了良好的外部环境,无形中提升了学生学习的动力,意识到了自己的不足,也便于学生能力的提升。
8.二次根式的教学反思 篇八
上完本节课,反思如下:
1.本节课是九年级上册第二十一章的内容,是一节新授课,在备课时按照目标让学生明白、过程让学生经历、结论让学生讨论、规律让学生总结的指导原则进行认真备课尤其对例题与练习题也进行了精心的挑选,按照由易到难由简入繁的顺序安排,并且认真制作了课件便于学生对重点内容的理解和难点的解决。
2.让学生回顾了算术平方根与平方根的概念,得出二次根式的定义后又复习了算术平方根具有双重非负性通过练习让。
根据几个例题的练习,学生可以得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法。
9.二次根式数学教案 篇九
教法:
1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;
2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
学法:
1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。
2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。
4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
知识点
上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。
二、展示目标,自主学习:
自学指导:认真阅读课本第3页――4页内容,完成下列任务:
1、请比较与0的大小,你得到的结论是:________________________。
2、完成3页“探究”中的填空,你得到的结论是____________________。
3、看例2是怎样利用性质进行计算的。
4、完成4页“探究”中的填空,你得到的结论是:____________________。
5 、看懂例3,有困难可与同伴交流或问老师。
课时作业
10.最简二次根式 篇十
说明:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
【概念理解巩固材料1】
正选练习题1
判断下列各式是否是最简二次根式?
备选选练习题1
判断下列各式是否是最简二次根式?
【概念理解学习材料2】
例2判断下列各式是否是最简二次根式?
分析:(1) 显然满足最简二次根式的两个条件.
(2) 或
解:最简二次根式只有 ,因为
或
说明:最简二次根式应该分母里没根式,根式里没分母(或小数).
【概念理解巩固材料2】
正选练习题2
判断下列各式是否是最简二次根式?
备选选练习题2
判断下列各式是否是最简二次根式?
【概念理解学习材料3】
例3判断下列各式是否是最简二次根式?
分析:最简二次根式应该分母里没根式,根式里没分母(或小数)来进行判断发现 和 是最简二次根式,而 不是最简二次根式,因为
在根据定义知 也不是最简二次根式,因为
解:最简二次根式有 和 ,因为
,
.
【概念理解巩固材料3】
正选练习题3
判断下列各式是否是最简二次根式?
备选选练习题3
判断下列各式是否是最简二次根式?
题目可根据学生实际情况选择2-3道.
【概念理解学习材料4】
例4判断下列各式是否是最简二次根式?
分析:被开方数是多项式的要先分解因式再进行观察判断.
(1) 不能分解因式, 显然满足最简二次根式的两个条件.
(2)
解:最简二次根式只有 ,因为
.
说明:被开方数比较复杂时,应先进行因式分解再观察.
【概念理解巩固材料4】
正选练习题4
判断下列各式是否是最简二次根式?
备选选练习题4
判断下列各式是否是最简二次根式?
题目可根据学生实际情况选择2-3道.
3.化简二次根式为最简二次根式方法学习与巩固
学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对二次根式化简的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固.
【化简方法学习材料1】
例1把下列二次根式化为最简二次根式
分析:本例题中的2道题都是基础题,只要将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面即可.
解:
【化简方法巩固材料1】
正选练习题1
化简
备选练习题1
化简
题目可由教师根据学生情况准备.
【化简方法学习材料2】
例2 把下列二次根式化为最简二次根式
分析:本例题中的2道题被开方数都是多项式,应先进行因式分解.
解:
说明:被开方数中能开的尽方的因数或因式的算术平方根移到根号外面后要注意符号问题.
在化简二次根式时,要防止出现如下的错误:
等等.
化简二次根式的步骤是:
(1) 把被开方数(或式)化成积的形式,即分解因式.
(2) 化去根号内的分母,即分母有理化.
(3) 将根号内能开得尽方的因数(式)开出来.
【化简方法巩固材料2】
正选练习题2
化简
备选练习题2
化简
题目可由教师根据学生情况准备.
【化简方法学习材料3】
例3把下列二次根式化为最简二次根式
分析:被开方式比较复杂时,要先对被开方式进行处理。
解:
说明:运算中要注意运算的准确性和合理性.
【化简方法巩固材料3】
正选练习题3
化简
备选练习题3
化简
题目可由教师根据学生情况准备.
【二次根式拓展练习】推荐阅读:
二次根式的运算同步练习题09-17
二次根式的加减07-17
说课稿二次根式08-28
二次根式教学设计图文09-05
大学生户外拓展方案-户外拓展方案08-21
拓展心得体会——企业户外拓展项目简介09-18
管理拓展游戏07-02