有理数乘除法经典

2024-10-12

有理数乘除法经典(11篇)

1.有理数乘除法经典 篇一

知识点一:有理数的乘法法则

两数相乘,同号得正,异号得负,并把绝对植相乘,任何数同0相乘,都得0。

1、若a>0,b>0.若a<0,b<0。

则a*b= +(|a|×|b|)

2、若a>0,b<0.若a<0,b>0。

则a*b=-(|a|×|b|)

3、对于任意有理数a,都满足a*0=0.知识点二:倒数

1、乘积是1的两个数互为倒数,其中一个数叫另一个数的倒数。

2、倒数为本身的只有

1、-1。0没有倒数。

知识点三:多个有理数的乘积

1、一般地,我们有几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。积的绝对值为等于各因数绝对值的积。

2、几个数相乘,如果其中有一个因数为0,那么积为0。反之若几个数的积为0,则至少有一个因数为0.3、有理数的乘法运算律

1、两个数相乘,交换因数的位置,积不变。ab=ba.(交换律)

2、三个数相乘,先把前两个数相积乘,或者先把后两个数相乘,积不变

(ab)c=a(bc)(乘法结合律)

3、一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加a(b+c)=ab+ac.(分配律)

有理数的乘法中,三种运算律依然适用。

知识点四:去括号法则

1、一个正数与一个括号相乘,括号内各项不变号。

2、一个负数与一个括号相乘,括号内各项都要变号。

知识点五:有理数的除法法则

除以一个不等于0的数,等于乘这个数的倒数。注意:0不能作除数。

因为除法可化为乘法,所以有理数的除法有与乘法类似的。法则:两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

知识点六:有理数的乘除法混合运算。

1、讲所有的除法转换成乘法。

2、确定积的符号。

3、运用乘法运算律简化运算,算出最后的结果。

知识点7:有理数的加减乘除混合运算

1、有括号先算括号内 在按先乘除后加减,先左后右的顺序计算,题型

1、关于相反数,绝对值,倒数的运算

若a、b互为相反数,c、d互为倒数,m的绝对值为2,则多少?

2、分类讨论思想

若ab ≠0,试写出2|a|/a+3|b|/b的所有可能值。

ab+m-cd的值是abm

3、简便运算

2.有理数的乘除法导学 篇二

在水文观测中,常会有水位上升和下降的问题. 现在有这样四个问题:

1. 如果水位每天上升3cm,那么5天后的水位比今天高还是低?高(或低)多少?

2. 如果水位每天上升3cm,那么5天前的水位比今天高还是低?高(或低)多少?

3. 如果水位每天下降3cm,那么5天后的水位比今天高还是低?高(或低)多少?

4. 如果水位每天下降3cm,那么5天前的水位比今天高还是低?高(或低)多少?

我们将水位上升记为正,水位下降记为负;几天后记为正,几天前记为负.上面几个问题就可以分别列式:

1. (+3)×(+5)=+15(cm);

2. (+3)×(-5)=-15(cm);

3. (-3)×(+5)=-15(cm);

4. (-3)×(-5)=+15(cm).

我们还可以类似地表示出1天后、2天后、3天后、1天前、2天前、3天前以及今天与今天相比水位变化的算式:

(+3)×(+1)=+3(cm),(-3)×(+1)=-3(cm);

(+3)×(+2)=+6(cm),(-3)×(+2)=-6(cm);

(+3)×(+3)=+9(cm),(-3)×(+3)=-9(cm);

(+3)×0=0(cm),(-3)×0=0(cm);

(+3)×(-1)=-3(cm),(-3)×(-1)=+3(cm);

(+3)×(-2)=-6(cm),(-3)×(-2)=+6(cm);

(+3)×(-3)=-9(cm),(-3)×(-3)=+9(cm).

这就是有理数的乘法,根据上面算式的运算规律,我们可以总结出与课本中一样的乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘都得0.

小学时我们就学过算几个正数的平均数.如果某地2月份某一周晚上20:00的气温(℃)分别是-3,-2,-4,-4,-2,0,1,那么该地这一周晚上20:00的平均气温(℃)就是[(-3)+(-2)+(-4)+(-4)+(-2)+0+1]÷ 7=(-14)÷7.

怎么计算(-14)÷7的值呢?这就是有理数的除法运算了.

小学时我们知道,除法是乘法的逆运算,那我们就可以将有理数的除法运算转化为有理数的乘法运算.因此,由(-2)×7=-14,我们就可以得到(-14)÷7=-2.另一方面,我们知道(-14)×=-2,所以就可得到等式(-14)÷7=(-14)×.

由此我们推出有理数的除法法则:除以一个不等于0的数,等于乘以这个数的倒数.

在学习有理数的乘除法时,一定要体会数学中的转化思想,将新的问题转化为我们已经解决的问题.

3.有理数乘除法计算题专项练习 篇三

(-9)×3

(-13)×(-0.26)

(-2)×31×(-0.5)

113×(-5)+3×(-13)

(-4)×(-10)×0.5×(-3)

(-38)×43×(-1.8)

(-37)×(-45)×(-

127)

(56―34―79)×36

0.25)×(-47)×4×(-7)

(-8)×4×(-

12)×(-0.75)

(-36)×(94+65-127)

(-

4×(-96)×(-0.25)×

25×

71834148413

(7-18+14)×56

-(-25)×+25×121421

(-66)×〔122-(-3)+(-11)〕

15×(-72)+34×72-

56×(-72)+(-

79)×72

18÷(-3)

(-24)÷6

(-57)÷(-3)

(-

(-42)÷(-6)

(+

35)÷

521)÷(-

3791)

(-13)÷9

0.25÷(-8)-36÷(-1)÷(-

0÷[(-3

2÷(5-18)×

1181323)

(-1)÷(-4)÷

3÷(-

67)×(-

79)14116)×(-7)]

-3÷(3-4)

(-247)÷(-6)

1÷(-3)×(-)

131378×(-

314)÷(-)

386351711513(4-8)÷(-6)

-3.5 ×(6-0.5)×7÷2

5×(-3-2)÷4

-1 27÷(-156553552)×18×(-7)

4.有理数乘除法经典 篇四

1.教学目标

一、知识与技能

(1)使学生掌握有理数乘法法则,并初步了解有理数乘法法则的合理性;(2)学生能够熟练地进行有理数乘法运算.二、过程与方法

(1)通过对问题的交互探索,培养观察、分析、抽象、概括的能力.(2)能够利用有理数的乘法法则进行简单计算;能够利用有理数的运算律进行简便计算.三、情感态度和价值观

培养学生积极思考和勇于探索的精神,使他们形成良好的学习习惯.2.教学重点/难点

教学重点

能按有理数乘法法则进行有理数乘法运算.教学难点

对含有负因数的乘法法则的理解和运算

3.教学用具

PPT课件

4.标签

教学过程

一、导入新课

前面学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:

1.2×3等于多少?表示什么?答案是:2×3=6,表示3个2相加,即:2.请将

写成乘法算式?

它怎么计算呢?这就是我们今天要研究的有理数的乘法.

二、新课学习

以下各个问题由学生自主进行探索研究,发现有理数乘法的合理性,进而归纳出有理数的乘法法则,注意其中的关键――对含有负因数的两个有理数相乘的含义的理解要让学生进行解释.

在数轴上,向东运动2米,记作2米,向西运动2米应记作什么?(-2米)看下面的例子:(1)2×3 其中2看作向东运动2米,×3看作沿此方向运动3次.用数轴表示如下:

结果怎样呢?(向东运动了6米),所以有:2×3=6.(2)(-2)×3 其中-2看作向西运动2米,×3看作沿此方向运动3次.用数轴表示如下:

结果怎样?(向西运动了6米),所以有:(-2)×3=-6.(3)2×(-3)

其中2看作向东运动2米,×(-3)看作沿与此相反的方向运动3次,即向西运动了3次,共向西运动了6米.所以有:2×(-3)=-6.(4)(-2)×(-3)请同学们说出对此式的理解,并说出结论.(-2)×(-3)=6 其中-2看作向西运动2米,×(-3)看作沿与此方向相反的方向运动了3次,即向东运动了3次,共向东运动了6米.(5)

请同学们说说对这四个式子的理解,并得出结论.(都等于0)

从上面一组题中,同学们觉得两个有理数得相乘的结果有没有规律可循?建议大家从两个方面进行思考:①积的符号与两个因数的符号有什么关系? ②积的绝对值与两个因数的绝对值又有什么样的关系?

课堂小结 有理数乘法法则

同号两数相乘得正,异号两数相乘得负,并把绝对值相乘; 0与任何有理数相乘仍得0.

几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.

课后习题

我们已经探索出了有理数的乘法法则,下面我们来应用其解决一些问题 1.尝试训练,巩固练习(出示投影)(1)确定下列两个有理数积的符号:

(学生口答,解释原因)(2)计算:

(学生自主完成,查漏补缺)2.例题1 计算:

(由学生口述,教师板书,共同归纳出有理数乘法得解题步骤:(1)确定积的符号;(2)计算积的绝对值)巩固练习(出示投影)

教师活动设计:通过这几个题是想让同学们体会在绝对值的计算过程中怎样处理假分数.

4.从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题. 确定下列积的符号,你能从中发现什么?

学生归纳结论:

结论1:有一个因数为0,则积为0;

结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 巩固练习:判断下列积的符号(口答)

五、作业布置习题1,2,9

板书 有理数乘法法则

同号两数相乘得正,异号两数相乘得负,并把绝对值相乘; 0与任何有理数相乘仍得0.

5.有理数的除法 篇五

夏朝友

学习目标:理解并掌握有理数除法的法则,会应用法则进行有理数的除法运算。

核心问题一:探索有理数的除法法则 复习回顾:有理数的乘法法则

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

注意:运算过程中应先判断积的符号,再将绝对值相乘。自学指导:阅读课本P34—P35例题4前,找出有理数除法的法则并记下来,思考:

这个法则是怎样得到的?它与有理数乘法的法则有什么不同吗?(五分钟内完成,看谁完成的又快又好)

阅读课本P34—P35例题4前,找出有理数除法的法则并记下来,思考:

这个法则是怎样得到的?它与有理数乘法的法则有什么不同吗? 有理数的除法法则:

两数相除,同号得 正,异号得 负,并把绝对值 相除 ;

0除以任何一个非0的数都得 0。注意:0不能作除数。口答:(1)12÷4 3(2)(-57)÷3-19(3)(-36)÷(- 9)4(4)(- 27)÷9-3(5)(- 48)÷(- 8)6(6)96 ÷(-16)-6(7)7.5 ÷(-2.5)-3 自学指导:阅读课本P35例题4,照它的解题步骤做P36练习第1题

(6分钟内完成)试一试:

(1)(-8)÷(-4)=2(2)(-8)×(-1/4)=2(3)(-1/6)÷(2/3)=-1/4(4)(-1/6)×(3/2)=-1/4 观察与思考:等式左右两边有怎样的变化?

(-8)÷(-4)=(-8)×(-1/4)=2(-1/6)÷(2/3)=(-1/6)×(3/2)=-1/4 想一想:

除以一个不为0的数等于乘以这个数的倒数。1aba(b0)b核心问题二:会用有理数的除法法则进行运算 例题解析:

一、计算:

431(1)(-)(-) 2 342解:原式

课内尝试:

435(-)(-) 342442(-)(-) 335442 ( )33532 45例2 计算:371 725732 3.582 先确定结果的符号,再根据法则进行绝对值的运算。温馨提示:

乘除运算莫着急;审清题目是第一.除法变成乘法后;积的符号先确立.计算结果别慌张;考个一百没问题.比比看,谁又快又准 计算:

对照学习目标谈收获:

理解并掌握有理数除法的法则,会进行有理数的除法运算。畅谈所得 感悟提升

1.做有理数的除法有哪些方法? 直接应用有理数除法的法则进行计算 把除法转化为乘法

2.做有理数的除法时应注意什么? 先确定结果的符号,再把除法转化为乘法,使运算更简便合理。说一说

在进行有理数除法运算时,你认为何时用法则一,何时用法则二会比较方便?

(1)两数相除,同号得正,异号得负,并把绝对值相除;(2)除以一个不为0的数等于乘以 311(1)()1(2)42415(2)(0.25)123 这个数的倒数。作业布置 作业:

P39习题A组 6, 7, 8 练习: 《基础训练》 数学在你我身边

6.有理数乘除中的符号确定小窍门 篇六

有理数的乘法和除法是在学习了有理数的加法和减法后学习的又一个很重要的内容,也是以后学习四则混合运算的基础.如何确定有理数乘除中的积(商)符号是学习的重点,下面和大家共同欣赏几个小窍门.

一、遇0不商量

例1计算:+1×-×-××0.

分析:题目给出以后,我们发现,如果按照运算顺序去计算肯定很麻烦,而且还要确定积的符号,但是我们知道任何数同0相乘结果都为0.因此解答本题,我们没有必要确定积的符号后再进行计算,可以直接得出结果为0,不用商量.

二、正号都去掉

例2计算:(+8)×4×(+3)×6×(+12)×(-1)÷(+36).

分析:我们知道,在一个数的前面加上正号后它的结果不变,因此我们在确定积或商的时候,不妨第一步先把式子中的正号去掉,再确定结果.

解:(+8)×4×(+3)×6×(+12)×(-1)÷(+36)

=8×4×3×6×12×(-1)÷36

=-192.

三、负号数个数

例3计算:(-2.2)×(+1.5)×-×-÷-.

分析:几个有理数相乘(除),都不为0时,积(商)的符号由负数的个数确定.当有奇数个负数时,积(商)为负;当有偶数个负数时,积(商)为正.因此在本题中我们数出负数的个数为4,所以结果为正值.

解:(-2.2)×(+1.5)×-×-÷-

=(-2.2)×1.5×-×-÷-

=×1.5××÷

=××××2

=.

以下几道习题供同学们练习:

1.两个有理数的积是负数,这两个有理数的符号是( ).

A.正号B.同号C.负号D.异号

2.5个有理数之积为负数,那么这5个数中正数的个数是().

A.2B.4C.2或4D.以上都不对

3.下列各式计算结果为正数的是().

A.(-3)+(-5) B.(-3)×(+5)

C.(-3)-(-5) D.(+3)×(-5)

4.四个有理数相乘,如果积为零,那么下列说法正确的是().

A.至少有一个因数为零

B.必定都为零

C.只有一个因数为零

D.至多有两个因数为零

7.有理数的除法2 篇七

1.4.2有理数的除法(2)

课型:新授课 主备:张灵旭

审核:七年级数学备课组 时间:2010.9 班级 姓名 学习目标:

1、学会用计算器进行有理数的除法运算.2、掌握有理数的混合运算顺序.3、通过探究、练习,养成良好的学习习惯 学习重点:有理数的混合运算

学习难点:运算顺序的确定与性质符号的处理 学习方法:观察、类比、对比、归纳 学习过程

一、课前预习导学

1、计算

1)(—0.0318)÷(—1.4)2)2+(—8)÷2

2、由上面的问题1,计算方便吗?想过别的方法吗?

3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)

二、课堂互动探究

1、由上面的问题1,你想想,用什么计算方便呢?

2、由上面的问题2,你的计算方法是先算 法,再算 法。

3、结合问题1,说说你操作计算器的方法

4、结合问题2,你先猜想,有理数的混合运算顺序应该是.5、阅读P36,并动手做做

三、课堂互动训练

能力竞技

1、计算

1)、18—6÷(—2)×(13)2)11+(—22)—3×(—11)

3)(—0.1)÷

12×(—100)

自我检测

1、选择题

1)若两个有理数的和与它们的积都是正数,则这两个数()

A.都是正数 B.是符号相同的非零数 C.都是负数 D.都是非负数2)下列说法正确的是()

A.负数没有倒数 B.正数的倒数比自身小

吉岘九年制学校七年级数学讲学稿(NO.15)

C.任何有理数都有倒数 D.-1的倒数是-1 3)关于0,下列说法不正确的是()A.0有相反数 B.0有绝对值

C.0有倒数 D.0是绝对值和相反数都相等的数 4)下列运算结果不一定为负数的是()A.异号两数相乘 B.异号两数相除 C.异号两数相加 D.奇数个负因数的乘积 5)下列运算有错误的是()A.1÷(-3)=3×(13-3)B.(5)25(2)

 C.8-(-2)=8+2 D.2-7=(+2)+(-7)6)下列运算正确的是()A.3114;B.0-2=-2;C.3441;D.(-2)÷(-4)=2 223

2、计算

1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7

3)(—48)÷8—(—25)×(—6)4)42(2)33(4)(0.25)

四、拓展与延伸

1、请你回顾本节课所学习的主要内容

2、阅读下列解题过程:计算:(—

7)—

7—

78÷(134812)

解:因为(1

3—

7—

77)=—

8)4812)÷(—8(7774812)×(—

=

78)+(—

7))+(—

7)8214×(—

78×(—

8712×(—)7=-2+1+

3= —

3所以 原式=-3 请按此方法计算:(-1)42÷(1+

2—

2—

363714)

8.有理数的除法教学反思 篇八

发布者: 朱亚玲 发布时间: 3/7/2011 PM 3:04:24 有理数的除法法则是怎么样的?前几节课采用的探索、讨论、验证的手段,是本节课继续学习的研究方法.总体上这节课我自我感觉还是良好的,现就几个方面做一下自我反思:

1.引入新课:学生在小学时已熟知乘法与除法互为逆运算,而且也熟悉“除一个数等于乘以它的倒数的运算”的法则,所以我对新课的引入就是结合小学以及初一前面所学的有理数的乘法,用乘法引出除法,这种设计既复习了前面有理数的乘法,又合理的引出有理数的除法,这个环节中,学生不仅要回答计算结果,而且要说明理由,即叙述所依据的法则内容,另外因为题目简单,所以我应机会全部留给学习有困难的学生,让他们来回答并适当鼓励,以增强他们的自信.这点我觉得是做得比较好。

接着让学生分组讨论,讨论完之后让一些小组派个代表说出本组讨论的结果,学生在前几节课对运算法则及运算律的语言表达过程中也积累了一些有用的数学语言,这对本节课除法法则的表达也是一个重要的语言基础.所以这个环节也顺便训练一下学生的语言表达能力,在这个环节,感觉自己唯一做得有点不足的就是;当学生讲出自己的结果,我太急于去纠正,让学生的思路跟着我的思路走,这不利于学生的表达也极容易打击学生的自信心。

2.在讲解例题的时候,我采用这种讲法,给出三个例题,然后引导学生得出解题的步骤,这样保证大部分学生在解题的时候犯错的概率比较小,有一位老师课后给我提了一个建议,说可以先让学生练着解题,三个题目都解出来以后再引导学生得出解题的步骤,这不失为一种好方法,可以更好地提高学生总结的能力,这样通过自己的总结也可以印象更加深刻点。所以这种教学思想以后我将试着多用在教学过程中。而且还要注意道例题讲解时,要注意板书规范,体现除法法则的应用步骤.要一边板书,一边讲述法则的内容,可不要求书写每一步的依据,但应做到心中有数.3.在探讨“除以一个数等于乘以这个数的倒数”这个知识点上,我通过提出两个问题来引导学生讨论从而得出。这个过程同学们的讨论还是比较激烈的,最后讨论结束后,我做得不大好的地方就是没让同学自己说出讨论的结果,没让学生自己分析两个等式左右两边的区别,而是由我自己说出来,体现不出学生的自主性,这点是以后教学中必须要注意的一个问题,在最大程度上以学生为主体,教师起到引导的作用。

4.对于多个数相除,在讲解时,一是讲清楚多个数相除时,可按顺序依次两个数相除进行;二是要讲清楚多个数相除时,也可以类比多个数相乘确定符号的方法进行,从而转化成非负数相除的情形.在这个问题上,我讲的还是比较到位的,在开始讲解前也给足学生时间去讨论:“多个有理数相除时有几种解法?”学生讨论的还是比较激烈的,而且学生也是比较积极的说出各自的讨论结果,但是有一点不足就是在做练习的时候给学生思考的时间比较少,显得太急促了。另外我还设计一组练习题供学生巩固新知,并没有因为教科书中没有练习而忽略这个程序.整节课的后半部分我感觉我是讲得比较快的,主要是把下课的时间看错了,所以显得后面部分讲解的节奏明显有点快,这样学生做练习的时候出现的错误没能很好的给予纠正,这是这节课明显不足的一个地方,以后对时间的把握还得再准确一点。

课后区教研员 林日福老师提出的两个观点我觉得挺不错的,第一就是在上课之前告诉同学这节课要学的内容并且要达到的目标,这样可以使学生上课的时候有更明确的目标,第二就是在解题过程涉及到一些数学思想时可适当向学生提出来,让学生逐步认识一些有用的数学思想,比如转化思想,这节课中将除法转化为乘法便是,可以适当的提一下。上面的两个做法我想在以后的教学工作中可以适当采纳一下。

9.有理数的除法法则教案 篇九

1、熟练有理数的乘法运算并能用乘法运算律简化运算.

2、让学生通过观察、思考、探究、讨论,主动地进行学习.

3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程.

二、教学重点和难点

教学重点:正确运用运算律,使运算简化

教学难点:运用运算律,使运算简化

三、教学过程

一、学前准备

1、下面两组练习,请同学们选择一组计算.并比较它们的结果:

1)(-7)8 8(-7)

[(-2)(-6)]5 (-2)[(-6)5]

2)(- )(- ) (- )(- )

[ (- )](-4) [(- )(-4)]

3)

请以小组为单位,相互检查,看计算对了吗?

二、探究新知

1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流.

2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?

3、归纳、总结

乘法交换律:两个数相乘,交换因数的位置,积 相等 .

即:ab= ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等

即:(ab)c= a(bc)

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

即:a(b+c)=ab+bc

三、新知应用

1、例题

用两种方法计算 ( + - )12

2、看谁算得快,算得准

1)(-7)(- ) 2) 9 15.

四、课堂小结

怎么样,这节课有什么收获,还有那些问题没有解决?

乘法交换律:两个数相乘,交换因数的位置,积 相等 .

即:ab= ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等

即:(ab)c= a(bc)

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

即:a(b+c)=ab+bc

五.作业布置

1、(-85)(-25) 2、(- )15(-1 );

3、( ) 4、(7).

5、-9(-11)+12(-9) 6、

10.有理数除法说课稿(通用) 篇十

在教学工作者开展教学活动前,常常要根据教学需要编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。那么应当如何写说课稿呢?以下是小编帮大家整理的有理数除法说课稿(通用6篇),仅供参考,欢迎大家阅读。

有理数除法说课稿1

一、说教材

1、教材的地位及作用。

有理数的运算是本章的重点,是学好后续内容的重要前提。本节课是在学习了有理数乘法的基础上进行的,是熟练进行有理数运算的必备知识,它与有理数的其它运 算形成了一个完整的知识体系。整节内容渗透了从一般到特殊、化未知到已知、用已知求新知的数学思想方法。通过本节学习让学生感受数学学习的乐趣,体验数学 思维的力量,发展学生自主创新的意识。

2、教学目标。

根据学生已有的认知基础及本课教材的地位及作用,依据课程标准,我确定本节课的教学目标为:

(1)知识技能方面:理解有理数除法的意义,熟练掌握有理数除法法则,会求有理数的倒数,会进行有理数的除法运算。

(2)过程与方法方面:通过有理数除法法则的导出及运算,让学生体会转化思想,感知数学知识的普遍性、相互转化性。

(3)情感态度方面:通过生生合作,使学生体会在解决问题中与他人合作的重要性,通过积极参与教学活动,让学生充分体验问题的探索过程,培养学生的探究意识,激发学生学好数学的热情。

3、教学重点、难点

在整个知识系统中,学生能够熟练地进行有理数的运算是很重要的,因此本节课的教学重点确定为熟练进行有理数的除法运算。勤思、善思,是学好数学的必要条 件。本节内容是在有理数乘法的基础上进行的,有理数的除法可以利用乘法进行,基于此,教科书中给出了两种法则,对初一学生来说,理解这两种法则有一定的难 度,因此,本节课的教学难点定为:理解有理数的除法法则。

二、说教法

为了突出重点、突破难点,使学生能达到本节设定的教学目标,我采用的教学方法是:

针对初一学生的思维依赖性强,思维活跃,但抽象概括能力相对较弱的特点,本节课充分借助多媒体来增强直观效果。运用“自学—辅导”模式,遵循“面向全体,尊重主体”的教学理念,采用“先学后教,当堂训练”的课堂教学结构,把教学过程化为学生自学、大胆猜想、合作交流、归纳总结的过程,使课堂教学遵循从生 动、直观到抽象思维的认识规律。

三、说学法

在教学活动中,为了激发学生自主学习,真正做到课堂教学面向全体学生,在教师的组织引导下,采用自主探究、合作交流的研讨式学习方式,让学生思考问题、获取知识、掌握方法,从而培养学生动手、动口、动脑的能力,成为学习的真正主人。

四、教学过程设计

1、设计问题,导入课题,提出课堂教学目标。

本着设计问题要有启发性、探索性的原则,首先出示了学生熟知的问题8÷(-4)=?也就是说(-4)*?=8

得出(-4)*(-2)=8所以8÷(-4)=-2而我们知道8*(-1/4)=-2所以8÷(-4)=8*(-1/4)

2、指导学生自学。

课件揭示自学指导(1)阅读教材第34页内容;(2)小组讨论疑难问题。这样做的目的是:让学生带着明确的任务,掌握恰当的自学方法,从而使自学更有效,与此同时,坚持每次自学前给予方法指导,可以使学生积累自学方法,从而提高学生的自学能力。

3、学生自学,教师巡视。

学生根据自学指导开始自学,通过察言观色,了解学生自学情况,使每个学生都积极动脑,认真学习,从而挖掘每个学生的潜力。在这个过程中,我会重点巡视中差的学生,帮助他们端正学习态度。

4、检查自学效果。

课件展示与例题类似的习题,让后进生板演或回答,要面向全体学生,后进生回答或板演时,要照顾到全体同学,让他们聆听别人回答问题,随时准备纠正错误,通 过巡视,搜集学生存在的错误,并在头脑里分类,哪些属于新知方面的,哪些属于旧知遗忘或粗心大意的,把倾向性的错误用彩色粉笔写在黑板对应练习处,供讲评 时用。通过这个过程,培养学生分析问题和解决问题以及学已致用的能力。

5、引导学生更正,指导学生运用。

学生观察板演,找出错误或比较与自己做的方法,结果是否与板演的相同,学生自由更正,让他们各抒己见,小组讨论,说出错因,更正的道理,引导学生归纳,上 升为理论,指导以后的学习。这个过程既是帮助后进生解决疑难问题,又通过纠正错误,训练一题多解,使优等生了解更加透彻,训练他们的求异思维和创新思维,培养了他们的创新精神和一题多解的能力。同时,在这个过程中,要引导学生寻找规律,帮助学生归纳上升为理论,引导学生找出运用时可能出现的错误,这是从理 论到理论架起一座桥梁,以免学生走弯路。

6、当堂训练。

为学生巩固知识,加深理解,我给出一组练习,这组题目,分三个梯度:法则的直接运用、有理数的除法运算、解决实际问题,而且把这些题分为必做题、选做题。通过完成课堂作业,检测每一位学生是否都能当堂达到学习目的。在这个过程中,我会不断巡视,了解哪些同学真正做到了“堂堂清”,哪些同学课后需要“开小 灶”,使课外辅导要有针对性。

7、反思小结,观点提炼。

通过前六个环节,学生已对本节课所学的内容有了较深刻的理解和掌握,引导学生进行反思,整理知识,总结规律,提炼思想方法。让学生从多角度对本节课归纳总结、感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力。

8、布置作业。

课本38页四题让学生做到作业本上,以考查学生对本节基本方法和基本技能的掌握情况。

五、两点说明。

(一)、板书设计

这节课的板书我是这样设计的,在黑板的正上方中间处写明课题,然后把板书分为左右两部分,左边是有理数除法的法则,为了培养学生把文字语言转化成符号语言 的能力,板书中只出现两种法则的符号表示,从而加深他们对法则的理解,板书右边是学生的板演,以便于比较他们做题中出现的问题。板书下方是课堂小结,重点 写出:有理数的除法可以转化成有理数的乘法,以体现本节课中的重要的数学思想方法。

有理数的除法

有理数除法的法则:a÷b=a×1/b(b≠0)板演练习:

a>0,b>0,a/b>0;a<0,b<0,a b="">0;2

a>0,b<0,a/b<0;a<0,b>0,a/b<0.3

课堂小结:有理数的除法 有理数的乘法

转化

(二)、时间分配:

教学过程中的八个环节所需的时间分别为:1分钟、2分钟、5分钟、8分钟、8分钟、16分钟、2分钟、1分钟。

有理数除法说课稿2

今天我说课的内容是:人教实验版教材《义务教育课程标准实验教科书》七年级(上),第一章有理数第四节有理数的除法第二课时p36页例9。

一、说教材

1、教材的地位和作用

本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。

2、教育目标

(1)知识与能力

①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。

②培养学生的观察能力、分析能力和运算能力。

(2)过程与方法

培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。

(3)情感态度价值观

通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。

3、教学重点和难点

重点和难点是如何利用有理数列式解决实际问题及正确而

合理地进行计算。

二、说教法

鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。

三、说学法指导

本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。

四、师生互动活动设计

教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。

五、说教学程序

(课本36页)例9:某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年盈亏情况如何?

师生共析:认真审题,观察、分析本题的问题共同回答以下问题:

1、年哪几个月是亏损的?哪几个月是的盈利的?

2、各月亏损与盈利情况又如何?

3、如果盈利记为“”,亏损记为“-”,那么全年亏损多少?盈利多少?

4、你能将亏损情况与盈利情况用算式列出来吗?

5、通过算式你能说出这个公司去年盈亏情况如何吗?

【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行)再由学生自主完成运算。

【教法说明】:此题一方面可以复习加()法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的观察,分析题目的能力。为以后解决实际问题做准备。

(三)归纳小结

今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的过程用数学的形式表现出来,直观准确的解决问题。

六、说板书设计

板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。

有理数除法说课稿3

一、教材分析

1、教材地位和作用

有理数除法是人教版七年级数学第一章《有理数》中的第四节的第二小节内容,是继有理数的加法、减法和乘法之后的又一种运算。学习有理数除法对学生解决生活中的实际问题带来了简便,使学生体会到学习有理数除法的必要性和现实意义,为后面学习有理数的混合算奠定了很好的基础。

2、教学目标

(1)知识与技能目标:了解有理数除法的意义;经历有理数的除法法则的过程,会熟练进行有理数除法运算。

(2)过程与方法目标:通过有理数除法法则的导出及运用,让学生体会转化思想;培养学生运用数学思想知道数学思维活动的能力。

(3)情感态度与价值观:在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益。

3、教学重点与难点

重点:正确运用法则进行有理数的除法运算。

难点:根据不同的情况选取适当的方法求商。

教学思想:转化思想

二、学生情况分析

学生在学习本节课前对有理数数的加、减、乘法运算以及相反数、绝对值相关概念较为熟悉且具有一定的观察、动手操作、合作交流能力,已初步具有一点分析归纳概括的能力。

三、教法与手段

采用“观察——猜想——验证——类比——归纳”的教学模式,营造可探索的环境,引导学生积极参与,掌握规律,主动地获取新知识。利用多媒体辅助教学,充分调动学生学习积极性,体会转化的数学思想。

四、学法指导

本节主要指导学生自主探究——合作交流——主动总结——自我提高。改变学生被动接受的学习方式,倡导学生自主参与,积极互动,主动地获取新知识,培养学生观察、归纳等数学能力和转化的数学思想方法。

五、教学过程

1、引入新课.我们在前几节课中学习了有理数的乘法运算,并认识了有理数的倒数,那大家知道乘法的逆运算是什么?该如何进行有理数的除法运算,这就是本节课我们学习的内容.引入新课,在黑板上写下课题:有理数的除法

2、温故而知新

(1)多媒体出示:倒数的定义你还记得吗?(指名回答)

(2)多媒体出示:你能很快地说出下列各数的倒数吗?以表格形式出现

计算(﹣4)×(﹣2)=?? 3 ×(﹣5)= 学生很容易做出。接着出示两道除法运算,计算8÷(﹣4)=(﹣15)÷3= 通过学生观察上题,猜想并验证,根据上面乘法运算的结果,也很容易得到答案。再用类比的方法得到另一道题答案。接着给出两组比大小,观察上面三个式子,你有什么发现吗?在这安排一个学生活动,引导学生观察,发现并总结得出结论:把除法运算转化为乘法运算,并及时提问如何转化的,得到除以一个不为0的数,等于乘这个数的倒数。多媒体出示有理数除法法则:文字形式,学生读一遍。并出示数学表达式,强调0不能作除数。(3)温故而知新:提问乘法法则并出两道乘法运算题

(4)多媒体出示例题两道,重在用法则,接下来安排9道练习,安排一个活动,学生在做中发现有理数除法运算符号法则,以填空形式出示。在安排两道例题,是学生在做中总结,什么时候用第一个法则,什么时候用符号法则较为简单,训练观察,归纳的能力.后面是6道填空、3道选择综合训练

3、课堂小结:谈谈我们的收获,从我学会了,我明白了等方面

4、作业:课本38页4、6

六、评价分析

1、合理选用教学素材,利用多媒体辅助教学,优化教学内容。

2、注意创设情境,引导学生探究,使其充分感受和体验知识的产生和发展过程。

3,注重了转化、类比等数学思想方法的渗透

4、对知识的迁移拓展,培养了学生的探索和创新能力,使每位学生得到不同程度的发展。

有理数除法说课稿4

本次说课我共分成教材分析、教学方法与手段、教学过程分析和几点思考四部分,具体内容如下:

一、教材分析:

(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,

“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。所以本节课的学习具有一定的现实地位。

(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。

同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。

(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下

1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。

2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。

3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。

4、教学重点:会进行有理数的乘除法运算。

5、教学难点:有理数乘除法法则的探索与运用。

确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。而确定重难点是根据新课标的要求,结合学生的学情而确定的。

二、教学方法和手段:

根据本节课的内容特点及学生的学情,我选择的教学方法是引导探索、小组合作、效果反馈的教学方法。为了提高课堂的教学容量,增加实际问题的直观性,我选用多媒体辅助教学手段。

关于学法:本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,我想这样更能有效的培养学生学习数学的能力,更好的培养学生数学地思考问题。

三、教学过程分析:

本课共6课时,重点是有理数乘除法法则的教学,下面我重点说有理数乘法法则的教学。整体的教学程序包括:情景创设、提出问题;引导探索、归纳结论;知识运用、加深理解;变式练习、形成能力;回顾与反思、纳入知识系统;布置作业;板书设计七部分。

四、几点思考:

1、关于评价:本节课我采用了教师评价、师生评价、生生评价的多种评价方式,同时在教学过程中我多表扬学生的表现,并采用鼓励性的语言激励学生思考回答。这样有利于提高学生学习的积极性,帮助学生树立信心。

2、关于课本的处理:本节课中我直接利用课本的实例来引入,主要是这样的例子比较接近学生的实际生活,同时用图片展示,可以使学生更好的理解,从而更好的突出本节课的重点。基于初一学生学习的特点,为了突出本节课的重点,更好的突破本节课的难点,课本上多个有理数相乘时的符号法则我留到下节课来探究。

有理数除法说课稿5

教学目标

1、理解有理数除法的意义,掌握有理数除法法则一,会进行有理数除法运算。

2、通过有理数除法法则的`导出及运算,让学生体会转化思想.培养学生新旧知识联系的思维能力。

3、通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.

通过新旧知识的联系,激发学生的求知欲望。

教学重点 有理数除法法则.

教学难点(1)商的符号的确定.(2)0不能作除数的理解.

教学过程

两段式设计的基础:可以运用学生学习有理数减法法则时用过的方法对推导除法法则的正迁移作用

一、从学生原有认知结构设计问题

1、计算:4×(-2);(2)-3×5;(3)(-2)×(-5).

2、已知乘积和一个因数,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.今天我们就来探求有理数的除法应当怎样进行?

二、学生预习问题的设置

议一议:

(1)对于除法运算(-8)÷(+4),你能用乘法的知识求出商来吗?如果能,所得的商应是什么数?

(2)请你举出更多有理数除法的例子试一试。举出4个例子。

(3)你能由此归纳出和有理数乘法法则相国类似的有理数除法法则吗?

三、学生课堂交流阶段

1、组内交流

2、小组汇报

四、教师总结

由此得到有理数除法的法则(一):

1. 同号两数相除得正,异号两数相除得负,并把绝对值相除;

2. 0不能做除数,0除以任何数都得0。

教师在总结中要对这种逆运算的关系进行强调,因为4×(-2)=-8,所以(-8)÷(+4)=-2;

同样-3×5=-15,15÷(-3)=5.

有理数除法说课稿6

有理数的除法是一种基本的有理数运算,它的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除法的混合运算,以及知道0不能作除数的规定和刚学过的有理数乘法的基础上进行的,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。

本节课的教学目标:

1、通过对有理数除法法则的探求,理解有理数除法法则,会进行有理数的除法运算。

2、会求有理数的倒数(特别是负数的倒数)。

3、通过把有理数的除法运算转化为乘法培养学生的转化思想。本节课的重点:熟练进行有理数的除法。

说课内容:有理数的除法运算,会求一个负数的倒数,难点是熟练掌握有理数的除法,难点的突出关键点在运算时,先确定商的符号,然后再根据不同情况采取适当的方法来求商的绝对值。因而教学时,让学生通过求实例理解有理数,除法与小学除法基本相同,只是增加了符号的变化。根据本节教材内容和学生的实际水平,为了更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用探求,发现,讲练相结合的教学方法。本节课的教学过程如下:

一、导入

1、复习有理数的乘法法则,为新课的讲解作为铺垫。

2、提出已知两个因数的积和其中一个因数,求另一个因数用什么运算,引出有理数的除法。

二、新课讲授

1、探究:由12/3是什么意思,商是几?引到(-12)/(-3)是什么意思?从而由已学的除法是乘法的逆运算得出(-12)/(-3)=4,或从除以一个数等于乘以另一个数的倒数考虑,把除法转化成乘法来计算。

2、接着由一组有理数除法题目,先计算然后通过引导学生观察比较每题的除数,被除数的符号,绝对值与商的符号,绝对值的关系,总结出规律,得出有理数的法则1,并提醒学生注意0不能作除数。

3、再准备两组题目让学生练习,通过练习加深对法则的理解及加强运算的能力。

4、通过课本中的做一做,比较每组算式的关系,总结出规律得到有理数除法法则2,并指出如何根据具体情况来选择这两个法则再根据法则2及做一做中第1题并结合小学时求正数的倒数的方法,归纳得出求负数的倒数的方法,并指出0没有倒数。

三、巩固提高

通过练习,让学生的新知识得到巩固,并纠正错误。

四、总结反思

让学生感受本节课所学的有哪些知识,本节课的知识点。

五、检测反馈

根据课后习题,选择适当的题目作为课堂作业,让学生更加熟练掌握本节课的知识。

板书设计:

1、有理数除法法则。

11.七年级数学有理数的除法课件 篇十一

1.使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。

2.使学生理解有理数倒数的意义,能熟练地进行有理数乘除混合运算。

二、内容分析

有理数除法的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除的混合运算法则,知道0不能作除数的规定和在中学已学过有理数乘法的基础上进行的。因而教材首先根据除法的意义计算一个具体的有理数除法的实例,得出有理数除法可以利用乘法来进行的结论,进而指出有理数范围内倒数的定义不变,这样,就得出了有理数除法法则。接下来,通过几个实例说明有理数除法法则,并根据除法与乘法的关系,进一步得到了与乘法类似的法则。最后,通过几个例题的教学,既说明了有理数除法的另一种形式,也指出了除法与分数互化的关系,同时,还指出有理数的除法化成有理数的乘法以后,可以利用有理数乘法的运算性质简化运算,这样,就说明了有理数乘除的混合运算法则。

本节课的重点是除法法则和倒数概念;难点是对零不能作除数与零没有倒数的理解以及乘法与除法的互化,关键是,实际运算时,先确定商的符号,然后再根据不同情况采取适当的方法求商的绝对值,因而教学时,要让学生通过实例理解有理数除法与小学除法法则基本相同,只是增加了符号的变化。

三、教学过程()

复习提问:

1.小学学过的倒数意义是什么?4和的倒数分别是什么?0为什么没有倒数。

答:乘积是1的两个数互为倒数,4的倒数是,的倒数是,0没有倒数是因为没有一个数与0相乘等于1等于。

2.小学学过的除法的意义是什么?10÷5是什么意思?商是几?0÷5呢?

答:除法是已知两个因数的积与其中一个因数,求另一个因数的运算,15÷5表示一个数与5的积是15,商是3,0÷5表示一个数与5的积是0,商是0。

3.小学学过的除法和乘法的关系是什么?

答:除以一个数等于乘上这个数的倒数。

4.5÷0=?0÷0=?

答:0不能作除数,这两个除式没有意义。

新课讲解:

与小学学过的一样,除法是乘法的逆运算,这里与小学不同的是,被除数和除数可以是任意有理数(零作除数除外)。

引例:计算:8×(-)和8÷(-4)

8×(-)=-2,8÷(-4),由除法的意义,就是要求一个数,使它与-4相乘,积为8,∵(-4)×(-2)=8,∴8÷(-4)=-2。

从而,8÷(-4)=8×(-),同样,有(-8)÷4=(-8)×,(-8)÷(-4)=(-8)×(-),这说明,有理数除法可以利用乘法来进行。

又(-4)×=-1,4×=1,由4和互为倒数,说明(-4)和(-)也互为倒数。

从而对于有理数仍然有:乘积为1的两个数互为倒数。

提问:-2,-,-1的倒数各是什么?为什么?

注意:求一个整数的倒数,直接写成这个数的数分之一即可,求一个分数的倒数,只要把分子分母颠倒一下即可,一般地,a(a≠0)的倒数是,0没有倒数。

由上面的引例和倒数的意义,可得到与小学一样的有理数除法法则,则教科书第101页方框里的黑体字,用式子表示,就是a÷b=a·(b≠0)。

注意:有理数除法法则也表示了有理数除法和有理数乘法可以互相转化的关系,与小学一样,也规定:0不能作除数。

例1计算。(见教科书第103页例1)

解答过程见教科书第103页例1。

阅读教科书第102页至第103页。

课堂练习:教科书第104页练习第l,2,3题。

提问:l.正数的倒数是正数,负数的倒数是负数,零的倒数是零,这句话正确吗?

(答:略)

2.两数相除,商的符号如何确定?为什么?商的绝对值呢?

答:商的符号由两个数的符号确定,因为除以一个数等于乘以这个数的倒数,当两个不等于零的数互为倒数时,它们的符号相同。故两数相除,仍是同号得正,异号得负,商的绝对值则可由两数的绝对值相除而得到。

从上所述,可得到有理数除法与乘法类似的法则,见教科书第102页上的黑体字。

在进行有理数除法运算时,既可以利用乘法(把除数化为它的倒数),也可以直接(特别是在能整除时)进行,具体利用哪种方式,根据情况灵活选用。

例2见教科书第104页例2。

解答过程见教科书第104页例2。

注意:除法可以表示成分数和比的形式。如84÷(-7)可以写成或84:(-7);反过来,分数和比也可以化为除法,如可以写成(-12)÷3,15:6可以写成15÷6。这说明,除法、分数和比相互可以互相转化,并且通过这种转化,常常可以简化计算。

例3见教科书第105页例3。

分析:(l)有两种算法,一是将写成,然后用除法法则或利用乘法进行计算;二是将写成24+,然后利用分配律进行计算。

对于(2),是乘除混合运算,可以接从左到右的顺序依次计算,也可以把除法化为乘法,按乘法法则运算。

解答过程见教科书第105页例3。

讲解教科书例3后的两个注意点。

课堂练习:见教科书第105页练习。

第1题可直接约分,也可化为除法。

第2题可先化成乘法,并利用乘法的运算律简化运算。

课堂小结:

阅读教科书第102页至第105页上的内容,理解倒数的意义,除法法则的两种形式及教材上的注意点。

提问:(l)倒数的意义是什么?有理数除法法则是什么?如何进行有理数的除法运算?(两种形式)如何进行有理数乘除混合运算?

(2)0能作除数吗?什么数的倒数是它本身?的倒数是什么?(a≠0)

四、课外作业

习题2.9A组第1,2,3,4,5题的双数小题,第6题。

上一篇:老公个人年终总结下一篇:表语从句练习