接地材料技术规范

2024-09-13

接地材料技术规范(8篇)

1.接地材料技术规范 篇一

变电站接地网材料的选择

编辑:万佳防雷-小黄

电力系统的接地是对系统和网上电气设备安全可靠运行及操作维护人员安全都起着重大的作用。研究接地体的布置、连接,接地体的材质等是保证系统安全稳定运行的必要措施之一,所以说设计、施工高标准的接地系统的变电站防雷工作的重中之重。

一、变电站接地网作用概述

接地网作为变电站交直流设备接地极防雷保护接地,对系统的安全运行起着重要的作用。由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故扩大问题屡有发生。因此,接地问题越来越受到重视。变电站接地网因其在安全中的重要地位,一次性建设、维护苦难等特点在工程建设中受到重视。另外,在设计及施工时也不易控制,这也是工程建设中的难点之一。因此,为保证电力系统的安全运行,降低接地工程造价,应采用最经济、合理的接地网设计思路,本文拟重点就材料选用方面进行相关探讨。

二、变电站接地网常用材料比较

目前广泛使用的接地工程材料有各种金属材料、非金属接地体、降阻剂和离子接地系统等。

1、金属接地材料。金属接地材料(主要指铜材和钢材),由于其具备良好的导电性和经济性,很长时期以来一直是接地工程中最重要的材料之一。但是由于金属材料存在容易腐蚀的问题,对接地电阻的影响也比较大,是安全生产中的一个大的隐患,这个问题一直困扰着用户。同时,近年生产资料价格猛涨造成接地成本增加,使得金属接地材料的缺点逐渐突显,一些行业或地区已经在渐渐地减少金属接地材料的使用,转而使用其它新型的接地材料。

2、非金属接地体。非金属接地材料是目前行业里新生的一种金属接地体的替换产品,由于其特有的抗腐蚀性能和良好的导电性和较高的性价比被广大用户所接受。目前非金属接地产品主要是以石墨为主要材料。基本成分是导电能力优越的非金属材料材料符合加工成型的,加工方法有浇注成型和机械压模成型。一般来说浇注成型的产品结构松散、强度低、导电性能差,而且质量不稳定,一些小型厂家少量生产使用这样的办法:机械压模法,是使用设备在几到十几吨的压力下成型的,不仅尺寸精度较高、外观较好,更重要的是材料结构致密、电学性能好、抗大电流冲击能力强,质量也相当稳定,但是生产成本较高,批量生产多采用。选型时,尽量采用后者,特别是接地体有抗大电流或打冲击电流的要求(如电力工作地、防雷接地)时,不宜采用浇注成型的非金属接地体。非金属接地体的特点是稳定性优越,其气候、季节、寿命都是现有接地材料中最好的,是不受腐蚀的接地体,所以,不需要地网维护,也不需要定期改造,但是,非金属接地体施工需要的地网面积比传统接地面积小很多,但是在不同地质条件下也需要的保证足够接地面积才可以达到良好的效果。

3、降阻剂。降阻剂分为化学降阻剂和物理降阻剂,化学降阻剂自从发现有污染水源事故和腐蚀地网的缺陷以后基本上没有使用了,现在广泛接受的是物理降阻剂(也称为长效型降阻剂)。物理降阻剂是接地工程广泛接受的材料,属于材料学中的不定性复合材料,可以根据使用环境形成不同形状的包裹体,所以使用范围广,可以和接地环或接地体同时运用,包裹在接地环和接地体周围,达到降低接触电阻的作用。并且,降阻剂有可扩散成分,可以改善周边土壤的导电属性。

现在的较先进降阻剂都有一定的防腐能力,可以加长地网的使用寿命,其防腐原理一般来说有几种:牺牲阳极保护(电化学防护),致密覆盖金属隔绝空气,加入改善界面腐蚀电位的外加剂成分等方法。降阻剂的使用,应掌握其施工技术,以达到最佳的效果,物理降阻剂有超过二十年的工程运用历史,经过不断的实践和改进,现在无论是性能还是使用施工工艺都已经是相当成熟的产品了。

4、离子接地系统。离子接地系统是传统的金属接地改进而来,从工作原理到材料选用都脱胎换骨的变化,形成各种形状的结构。这些接地系统的共同点是结构部分采用防腐性更好的金属,内填充电解物质及其载体组分的内填料,外包裹导电性能良好的不定性导电复合材料,一般称为外填料。接地系统的金属材料已经出现的有不锈钢、铜包钢和纯钢材的。不锈钢的防腐较钢材好,但是在埋地环境中依然会多多少少的锈蚀,以不锈钢为主体的接地系统不宜在腐蚀性严重的 环境中使用。表面处理过的铜是很好的抗锈蚀材料,铜包钢是铜-钢复合材料,钢材表面覆盖铜,可以节约大量的贵金属-钢材。套管法活电镀法生产,表面铜层的厚度为0.01mm到0.50mm,厚度越厚防腐效果越好。纯铜材料防腐性能最好,但是要耗用大量的贵金属,在性能要求较高的工程中使用。由于接地系统大多向垂直方向伸展,所以接地面积大多要求很小,可以满足地形严重局限的工程需要。

三、接地材料的具体选用

不同的行业,不同的地域使用的接地材料也不尽相同,不同的接地材料有着不同的特点,根据其特点结合环境使用是接地工程前期应该考虑的问题。

目前市场上使用率最高的接地材料还是金属材料,主要有铜板、角钢和扁钢等,但是由于接地环境的不同和用户需求也不尽相同。在有些环境和情况下是不适合使用金属接地材料的,例如在高腐蚀土壤中金属接地材料在很短的时间久被腐蚀而丧失接地的功能。同时,从造价方面来考虑,使用金属材料的传统接地,在工程造价上可能不会太高的,但是它的使用寿命短,使用非金属接地体要比金属材料的传统接地高一些,但其使用寿命要比传统接地的寿命高出好几倍,根据其寿命传统接地平均每年造价不低于3-4千元,而非金属接地体根据其寿命平均每年造价不高于3-4百元,这还不包括因地网不合格改造的工程费用,这些都是应该在选择接地材料时加以考虑的。

此外根据环境不同采用不同的材料作为接地体也是延长有效接地寿命的方法。离子接地棒适合在城市不具备施工空间的地方使用,例如城市建筑群等,而对于山地条件则比较适合使用非金属接地棒,由于在山地离子棒自身的吸水性并不能满足自身稳定接地电阻的需要常常要增加盐类,而岩石环境又是失水环境,所以这种环境下就应该选用吸水性好的具有较高强度 的非金属接地棒作为接地体,同时在野外也要考虑使用离子接地棒的可能丢失问题,在一般土壤环境比较适合使用压制的非金属接地体和金属接地体。

四、结束语

在变电站建设中,把接地做好是很关键的一件事,这也是复杂的系统工程,在不同的条件下选用适合的接地材料,在有限的资金情况下,做好一个合格的地网不仅要考虑资金的因素更要考虑性能因素。在现代随着微电子技术的迅猛发展,它对环境要求也越来越高,有一个很小的流涌就可以使设备损坏,人们对接地系统的重视程度也逐步提高,接地做的好与坏直接关系到设备能否正常运行,是否有安全隐患的大问题。因而,对接地材料性能、适用环境进行详细的了解是选择好的接地材料,做好接地网建设的重要因素。

2.接地材料技术规范 篇二

关键词:接地网,腐蚀

接地装置是确保电力设备安全运行和人身安全的重要环节。然而,由于原接地设计及建设标准偏低,使接地的技术现状与电力设备技术的飞速进步不相适应,尤其是未能有效解决接地网的防腐蚀问题,使接地装置成为薄弱环节。这就要求对接地装置的可靠性和使用寿命给予足够重视。接地网腐蚀造成的局部断裂,接地线与接地网脱离等可导致接地电阻超标,甚至造成一些设备“失地”的严重后果。

我国的接地网材料主要以镀锌钢为主。接地极材料的腐蚀与土壤环境腐蚀性、接地网结构、电气设备运行状况和接地网入地电流密切相关。接地网电极在地下腐蚀的腐蚀行为、腐蚀状态未见详细研究。为进一步摸清接地网腐蚀主要影响因素的作用,选择了正在进行维修接地网的瓦房店仙浴湾变电站以及谢屯变电站进行检测与分析。通过对接地网的腐蚀状况与土壤腐蚀性、接地网电流状况等因素分析影响接地网腐蚀的主要因素。

1 接地网腐蚀调查

1.1 接地网腐蚀调查区域简介

仙浴湾变电站与谢屯变电站分别位于瓦房店市仙浴湾镇和谢屯镇,均为6.6k V变电站,由于扩容需求,两变电站正在进行地网改造,原有接地网结构已经全部挖开,准备重新安装。变电站地面设备包括变压器及开关每变电站分别取两处作为土壤环境、地电流情况测试点。

1.2 接地网土壤环境腐蚀性检测与分析

接地极埋设在土壤当中,并直接与大地接触。土壤腐蚀是接地极材料最主要的腐蚀类型,因此,土壤的腐蚀性是接地网腐蚀的重要指标。本次通过测量土壤的电阻率、瞬时腐蚀率及变电站测试点地面电位梯度评价土壤的腐蚀性。土壤电阻率与瞬时腐蚀速率反应土壤环境电化学腐蚀的强

1.3 接地网土壤环境腐蚀性检测结果

表1为对仙浴湾变电站与谢屯变电站土壤环境腐蚀性检测结果的测量结果。检测结果分析表明,瓦房店仙浴湾与谢屯变电站土壤环境腐蚀性较弱,这与当地的地质因素有关,两个变电站均地处山区,深度为1米的土层以山石与砂土为主,土壤电阻率较大,土壤保水性、地下水位均较低,土壤对碳钢及镀锌钢材料的腐蚀性较弱。

1.4 两个变电站接地网腐蚀状况调查结果

由两个变电站土壤腐蚀性测试结果可以看出,两个变电站所处地区的土壤腐蚀性较弱。但将变电站原接地网都开挖出来后,接地网的腐蚀表现出了明显的差异化,表观上看,距离变电站变压器较近地区的接地网腐蚀非常严重,锌层腐蚀殆尽,扁钢表面布满腐蚀产物,现场在变电站区域选择5处典型区域,用锉刀去除腐蚀产物后,利用千分尺深度计及测厚仪确定接地扁钢的最大腐蚀深度,接地扁钢与变压器的距离与腐蚀深度之间的关系见图1、图2。

仙浴湾变电站与谢屯变电站均属于66 kV的小型变电站,站内设备简单。从现场检测结果可以清楚的看出,接地网的腐蚀存在明显的差异化。距离变压设备距离越近,接地材料的腐蚀越严重。由于两个站的土壤腐蚀较弱,这种差异化更为明显。谢屯变电站的接地网加设有牺牲阳极保护,因此在距离变压器较远的地区腐蚀极为轻微。但在变压器附近,牺牲阳极的作用表现的不很明显,距变压器1.5 m处接地扁钢的腐蚀深度仍达到2.5 mm。图3~图6为两个变电站各处测试点接地材料的腐蚀形貌现场检测结果可以看出,变压器下接地材料的腐蚀速度远远高于其他区域。测试点之间的接地材料腐蚀深度差异高达32倍。产生这种差异化的因素只有变压器的入地电流。设备在工作的时候,ABC三相负载或相位角存在差别的时候,会有额外的电流通过设备的中性点接地流入接地网。电流随着与变压器之间的距离逐渐降低。入地的电流对接地材料具有强烈的腐蚀作用。造成变压器周围的接地网腐蚀速度大大增加,甚至导致接地网牺牲阳极系统失效。

2 结论

通过对66 kV变电站地网的全面开挖,首次发现了接地网腐蚀的差异化。研究结果表明,接地网材料的腐蚀主要有两种因素,土壤腐蚀与设备入地电流。当土壤腐蚀性较弱时,接地网的腐蚀差异化越明显。同时发现传统的接地网牺牲阳极防护措施在设备入地电流较大时,其作用并不明显。我们在接地网防腐蚀设计、施工、维护与管理上必须考虑到这种差异化,保证接地网的使用寿命。

参考文献

3.接地材料技术规范 篇三

摘要:为了及时确定故障线路,在小电流接地单相接地故障中采用正确合适的选线技术对配电网的安全运行具有十分重要的意义。当前国内选线装置存在一些问题,很难满足实际工作的需要。文章对主要选线技术的应用进行了研究,为提高选线的准确率提供了依据。

关键词:小电流接地系统;单相接地;选线技术

中图分类号:TM2文献标识码:A文章编号:1006-8937(2009)10-0069-01

目前,我国小电流接地系统主要用于3~66kV配电网络。然而,小电流接地系统在实际运行中容易受到单相接地故障的困扰。发生小电流接地系统故障时,故障线路对地电容电流值非常小,产生的小电流叠加在更大的数值的负荷电流之上,很难对其进行准确地检测,再加上配电网络呈复杂的拓扑结构造成小电流接地系统选线比较困难。传统的选线方法是由工作人员依次拉闸,从而确定具体的故障线路。然而,这种方法存在很大的局限性:有时寻找故障将花费很长的时间;而且人工选线时断路器的断开和闭合操作会影响到配电网络的运行安全。因此,快速准确的选定故障线路,将有助于提高电气设备的使用寿命和配电网络的供电可靠性,大大减少停电维修的时间,关系到电力供应部门和用户的切身经济利益。

1当前小电流接地系统故障选线装置中存在的问题

①故障特征单一。装置利用故障的某一方面特征作为选线依据,当故障特征的并不明显时选线装置就会出现错误的判断。虽然有些装置综合采用了多种选线方法,但是其基本原理是几个选线方法的简单叠加,在遇到情况复杂的问题时就无能为力了。

②消弧线圈削弱了故障信号。在中性点接地经消弧线圈接地系统中,当单相接地故障发生时,消弧线圈的补偿将会削弱故障信号,使选线装置无法得出准确的判断。

③信号处理范围有限。许多选线装置一般只能处理20~1000 mA的二次信号,如果超过这个限定范围,该装置将无法正确选线。

④注入信号的用处不大。有些选线选置通过向系统注入弱信号方法实现目的,但这种方法实际上用处不大。

2主要选线技术的应用

2.1中性点接地系统选线技术

非故障线路三相电流等于本线路的接地电容电流;故障线路三相电流等于所有非故障线路的三相电流之和。中性点接地系统采用零序电流基波群体比幅比相法技术进行选线是可行的。首先,比较各条线路的零序电流值,选择其中较大的幅值的线路作为候选线路;其次,在比较各线路的相位,如果某线路与其他线路有差异那么它就是故障线路;如果所有线路的零序电流是一致的,则可以确定是母线发生了故障。使用这个技术应注意,线路的长度不能有明显的差异,出线数量也不能太小。

2.2中性点经消弧线圈接地系统选线技术

中性点经消弧线圈接地系统中,从母线流向线路与非故障线路方向零序电流的方向是一致的,不能单单通过判断电流的方向来确定具体的故障线路。此外,由于过补偿度一般只有5%~10%,剩余电流值相对较小,故障线路零序电流幅值比中性点不接地的情况大大减少,有的时候甚至少于非故障线路的零序电流,这就使得在工作中很难根据零序电流幅值确定故障线路。通常在这种情况下,采用5次谐波选线方法进行选线。因为消弧线圈对5谐波分量呈现的阻抗较基波分量时增大5倍,而线路容抗则相应地减少5倍,消弧线圈是远不能补偿5次谐波产生的电容电流。通过检测5次谐波零序电流与电容电流即可快速确定发生故障的线路。

2.3基于小波分析的选线方法

小波分析可以进行精确的信号分析,特别是对暂态突变信号和弱信号的变化更敏感,能够可靠地提取故障特征。小波变换模极大值理论告诉我们:故障将导致信号与噪声异常,小波变换模极大值点与采样数据的异常点相对应,并随着噪声的模极大值的增加而衰减的。所以,适当的尺度分解后,可以忽略噪音的影响而得到更好的暂态短路信号。小波变换将信号转换成不同尺度和位置的小波之和,并利用适当的小波和小波零序电流的暂态特征分量进行小波变换后,容易看到故障路线暂态零序电流特征分量的幅值是高于非故障线路的,其特征分量的相组成也是非故障线路相反。这就可以利用暂态信号作为故障线路的选择标准。然而,在实际工作中,电力系统运行复杂性和不断变化的情况,可能出现暂态分量小于稳态分量的情况。这时应当对母线零序电压和各条出线零序电流轮提取基波的小波系数,然后类似地构造选线标准。

总之,选线技术在小电流接地系统故障维修中应用十分广泛,并且对配电网络的可靠运行具有十分重要的意义。电力工程技术人员必须在实际工作中不断总结经验,采用合适的选线方法,努力提高选线的准确性。

参考文献:

[1] 彭玉华.小波变换与工程应用[M].北京:科学出版社,2000.

4.机房接地规范 篇四

接地系统是机房环境的重要组成部分,它不仅直接影响机房通信设备的通信质量和机房电源系统的正常运行,还起到保护人身安全和设备安全的作用。

接地系统是由接地体、接地引入线、地线盘或接地汇接排和接地配线组成。接地系统的电阻主要由接地体附近的土壤电阻所决定。如果土壤电阻率较高,无法达到接地电阻小于4欧姆的要求,就必须采用人工降低接地电阻的方法。

1、机房接地系统设计目标

在采用分散接地方式时,接地电阻要求如下:(1)工作接地电阻≤2Ω(2)保护接地电阻≤4Ω(3)防雷接地电阻≤10Ω 我公司接地系统要求:

1、计算机系统直流直接接地电阻小于4欧姆

2、计算机系统直流联合接地电阻小于1欧姆

3、交流工作接地系统接地电阻小于4欧姆

4、计算机系统安全保护接地电阻和静电接地小于2欧姆

5、防雷保护接地系统接地电阻小于2欧姆

2、接地的种类

工作接地:利用大地作为工作回路的一条导线

保护接地:利用大地建立统一的参考电位或起屏蔽作用,以使电路工作稳定、质量良好,特别是保证设备和工作人员的安全。重复接地:将零线上的多点与大地多次作金属性连接。

静电接地:设备移动或物体在管道中移动,因摩擦产生静电,它聚集在管到、容器和贮藏或加工设备上,形成很高电位,对人身安全及对设备和建筑物都有危险。作了静电接地,静电一旦产生,就导入地中,以消除其聚集的可能。

直流工作接地(也称逻辑接地、信号接地):计算机以及一切微电了设备,大部分采用CMOS集成电路,工作于较低的直流电压下,为使同一系统的电脑、微电子设备的工作电路具有同一“电位”参考点,将所有设备的“零”电位点接于同一接地装置,它可以稳定电路的电位,防止外来的干扰,这称为直流工作接地。

防雷接地:为使雷电浪涌电流泄入大地,使被保护物免遭直击雷或感应雷等浪涌过电压、过电流的危害,所有建筑物、电气设备、线路、网络等不带电金属部分、金属护套、避雷器以及一切水、气管道等均应与防雷接地装置作金属性连接。接地施工方案1 1.在所选位置向下挖1.6m深的坑;

2.坑内打入2.2m长,下端尖形的紫铜接地极; 3.相邻接地体(一根)间距5m,建筑物间距1.5m; 4.相邻接地体间连接入扁铜40×4mm连接; 5.打入接地体时到2.0m时止;

6.用40×4mm扁铜与接地体焊接与母线连接入机房; 如图: 材料 紫铜接地极 扁铜 辅助接地极 盐与木炭粉 母线 规格 600×50mm 40×4mm Φ20或Φ50 适量 25mm2×100m 此方案一般实测接地电阻约1 ∽3Ω。等电位连接

在机房防静电地板下,沿着地面上布置40*3紫铜

排,形成闭合环接地汇流母排。将配电箱金属外壳、电源地、避雷器地、机柜外壳、金属屏蔽线槽、门窗等穿过各防雷区交界的金属部件和系统(设备的外壳),以及对防静电地板下的隔离架进行多点等电位接地就进至汇流排。并采用等电位连接线4-10mm2铜芯线螺栓紧固的线夹作为连接材料。同时在机房找出建筑物主钢筋,经测试确与避雷带连接良好,用f14镀锌圆钢通过铜铁转换接头将接地汇流母排与之连接起来。

地板下直流铜排及接线端子 实物图

材料 紫铜接地极 扁铜 辅助接地极 盐与木炭粉 母线 规格 600×50mm 40×4mm Φ20或Φ50 适量 25mm2×100m

机房接地方案

接地系统是机房环境的重要组成部分,它不仅直接影响机房通信设备的通信质量和机房电源系统的正常运行,还起到保护人身安全和设备安全的作用。

接地系统是由接地体、接地引入线、地线盘或接地汇接排和接地配线组成。接地系统的电阻主要由接地体附近的土壤电阻所决定。如果土壤电阻率较高,无法达到接地电阻小于4欧姆的要求,就必须采用人工降低接地电阻的方法。

1、机房接地系统设计目标

在采用分散接地方式时,接地电阻要求如下:(1)工作接地电阻≤2Ω(2)保护接地电阻≤4Ω(3)防雷接地电阻≤10Ω 我公司接地系统要求:

1、计算机系统直流直接接地电阻小于4欧姆

2、计算机系统直流联合接地电阻小于1欧姆

3、交流工作接地系统接地电阻小于4欧姆

4、计算机系统安全保护接地电阻和静电接地小于2欧姆

5、防雷保护接地系统接地电阻小于2欧姆

2、接地的种类 工作接地:利用大地作为工作回路的一条导线

保护接地:利用大地建立统一的参考电位或起屏蔽作用,以使电路工作稳定、质量良好,特别是保证设备和工作人员的安全。重复接地:将零线上的多点与大地多次作金属性连接。

静电接地:设备移动或物体在管道中移动,因摩擦产生静电,它聚集在管到、容器和贮藏或加工设备上,形成很高电位,对人身安全及对设备和建筑物都有危险。作了静电接地,静电一旦产生,就导入地中,以消除其聚集的可能。

直流工作接地(也称逻辑接地、信号接地):计算机以及一切微电了设备,大部分采用CMOS集成电路,工作于较低的直流电压下,为使同一系统的电脑、微电子设备的工作电路具有同一“电位”参考点,将所有设备的“零”电位点接于同一接地装置,它可以稳定电路的电位,防止外来的干扰,这称为直流工作接地。

防雷接地:为使雷电浪涌电流泄入大地,使被保护物免遭直击雷或感应雷等浪涌过电压、过电流的危害,所有建筑物、电气设备、线路、网

络等不带电金属部分、金属护套、避雷器以及一切水、气管道等均应与防雷接地装置作金属性连接。接地施工方案1 1.在所选位置向下挖1.6m深的坑; 2.坑内打入2.2m长,下端尖形的紫铜接地极; 3.相邻接地体(一根)间距5m,建筑物间距1.5m; 4.相邻接地体间连接入扁铜40×4mm连接; 5.打入接地体时到2.0m时止;

6.用40×4mm扁铜与接地体焊接与母线连接入机房; 如图: 材料 紫铜接地极 扁铜 辅助接地极 盐与木炭粉 母线 规格 600×50mm 40×4mm Φ20或Φ50 适量 25mm2×100m 此方案一般实测接地电阻约1 ∽3Ω。等电位连接

在机房防静电地板下,沿着地面上布置40*3紫铜排,形成闭合环接地汇流母排。将配电箱金属外壳、电源地、避雷器地、机柜外壳、金属屏蔽线槽、门窗等穿过各防雷区交界的金属部件和系统(设备的外壳),以及对防静电地板下的隔离架进行多点等电位接地就进至汇流排。并采用等电位连接线4-10mm2铜芯线螺栓紧固的线夹作为连接材料。同时在机房找出建筑物主钢筋,经测试确与避雷带连接良好,用f14镀锌圆钢通过铜铁转换接头将接地汇流母排与之连接起来。地板下直流铜排及接线端子 实物图

材料 紫铜接地极 扁铜 辅助接地极 盐与木炭粉 母线

5.防雷接地测试技术方案 篇五

批 准:

审 核:

复 审:

初 审:

编 制:

XXXX公司 2017年03月21日

防雷接地测试技术方案

一、项目名称:厂区内防雷装置接地电阻测试

二、项目管理组织机构:

厂部负责人:

生产技术部负责人:

部门或分场名称及负责人: 班组名称及负责人:

三、概述

按照国家有关规定,安装的防雷装置,应当每年检测一次接地电阻。检测防雷装置时,应由装置所在单位向有防雷装置检测资质的单位申报,具有检测资质的单位对申报的防雷装置,应当及时进行检测,并出具检测报告。为保证本我厂防雷装置及时得到检测,预防雷害事件发生,特编制此方案。

四、编制依据

《中华人民共和国气象法》。《气象灾害防御条例》。《吉林省气象条例》。《防雷减灾管理办法》。

《吉林省人民政府办公厅关于进一步做好防雷减灾工作的实施意见》。GB/T21431-2015 《防雷装置安全检测技术规范》 GB/50057-2010 《建筑物防雷设计规范》

GB15599-2009 《石油与石油设施雷电安全规范》 DL/T596-1996 《电力设备预防性试验规程》。

五、主要测试内容

1、厂区内独立避雷针接地电阻测试。

2、厂区内生产设备或装置接地电阻测试。

3、厂区内建(构)筑特防雷接地测试。

4、厂区内易燃、易爆场所防雷接地测试。

六、技术要求

1、测量工作应在雷雨季节前进行,避免雨后进行测量。

2、所使用的检测装置应经过校验并有检验合格证及检验报告。

3、测量前应对防雷装置外观进行检查,其连接应符合规范要求。

4、独立避雷针接地电阻值应小于10Ω。

5、生产设备或装置接地电阻值应符合设计或规范要求。

6、建(构)筑物防雷接地电阻应不大于10Ω。

7、易燃、易爆储罐及其管道接地电阻值不应大于30Ω。

8、其它特殊部位或装置接地电阻值应符合设计规范要求。

9、测量工作应由我厂专业人员负责监护,检测人员应遵守我厂相关安全规定。

七、费用概算

检测费用,应根据吉林省物价局、吉林省财政厅《关于统一全省雷电防护设施安全检测收费标准的通知》进行技术服务收费。

八、效益分析

1、经济效益

检测各防雷设施接地情况,发现不合格的设施及时进行整改,预防雷害事件发生,防止设备及设施损坏,保障设备安全稳定运行经济效益不可估量。

2、社会效益

检测各防雷设施接地情况,保障发电设备稳定运行,确保发电可靠性,保障社会生产生活用电。

3、投入产出比

6.防雷与接地工安全技术交底 篇六

一、施工准备

(一)作业条件

1、接地体安装:

(1)人工接地体:设计位置的场地没被占用,且已经清理好。(2)利用底板钢盘或深基础做接地体:底板盘与柱筋连接处已绑扎完。

2、接地干线安装:(1)支架安装完毕。(2)土建抹灰已完成。(3)穿墙保护管已预埋。

3、支架安装:

(1)各种支架已运到现场。(2)结构工作已经完成。(3)室外必须有脚手架或爬梯。

4、防雷引下线暗敷设:

(1)建筑物有有脚手架或爬梯,达到能上人操作的条件。(2)利用主筋作引下线时,钢筋绑扎完毕。

5、避雷引下线明敷设(1)支架安装完毕。

(2)建筑物有脚手架或爬梯,达到能上人操作的条件。(3)土建外装修完毕。

6、避雷网安装:(1)支架安装完毕。

(2)具备调直场地和垂直运输条件。(3)接地体与引下线必须做完。

7、避雷针安装:

(1)接地体及引下线必须安装完毕。(2)需要脚手架处,脚手架搭设完毕。

(3)土建结构工程已完成,并随结构施工做完预埋件。

(二)材料要求

1、防雷及接地装置所有部件均应采用镀锌材料,并有出厂合格证和镀锌质量证明书。在施工过程 中应注意保护镀锌层。其主要镀锌材料有:扁钢、角钢、圆钢、钢管、铅丝、螺栓、垫圈、弹簧垫圈、U 形螺栓、元宝螺栓、支架等。

2、电焊条、氧气、乙炔、沥青油、混凝土支座、预埋铁件、小线、防腐油、银粉、黑色油漆等。

(三)主要机具

1、常用电工工具:手锤、钢据、压力案子、大锤等。

2、线坠、卷尺、大绳、粉线袋、绞磨(或倒链)、紧线器、电锤、冲击钻、电焊机、气焊工具等

二、质量要求

质量要求符合《建筑电气工程施工质量验收规范》(GB50303-2002)的规定。

项序检查项目允许偏差或允许差 主1 接地装置测试点的设置第24.1.1 条 控2 接地电阻值测试第24.1.2 条

项3 防雷接地的人工接地装置的接地干线埋设第24.1.3 条 目4 接地模块的埋设浓度间距和基坑尺寸第24.1.4 条 一般 接地装置埋设深度、间距搭接长度和防腐措施 第24.2.1 条

项2 接地装置的材质和最小允许规格、尺寸第24.2.1 条 目3 接地模块与干线的连接和干线材质选用第24.2.3 条

三、工艺流程

接地体→接地干线→支架→引下线明敷→避雷针→避雷网→避雷带或均压环

四、操作工艺

(一)接地体的安装

1、接地体的安装有关规定:

(1)接地体顶面埋设深度应符合设计要求。当无要求时,不应小于0.6m。角钢及钢管接地体应垂直配置。除接地体外,接地体引出线的垂直部分和接地装置焊接部位应防腐处理;

在作防腐处理前,表面必须除锈并去掉焊接处残留的焊药。

(2)垂直接地体的间距不应小于其长度的3~5 倍。水平接地体的间距应符合设计规定。当无 设计规定时不宜小于5m。

(3)除环形接地体外,接地体埋设位置应在距建筑物3m 以外。距建筑物出入口或人行道也 应大于3m,如小于3m 时,应采用均压带做法或在接地装置上面敷设50~90mm 厚度的 沥青层,其宽度应超过接地装置2m。

(4)接地体敷设完毕,基坑回填土内不应夹有石块和建筑垃圾等。(5)外取的土壤不得有较强的腐蚀性;在回填土时应分层夯实。

(6)接地装置由多个分接地装置部分组成时,应按设计要求设置便于分开的断接卡。自然接 地体与人工接地体连接处应有便于分开的断接卡,断接卡应有保护措施。

2、人工接地体安装:

(1)接地体加工:根据设计要求的数量、材料、规格进行加工,材料一般采用钢管和角钢切 割,长度不应小于2.5m。如采用钢管打入地下应根据土质加工成一定的形状遇松软土 壤时,可切成斜面形,为了避免打入时受力不均使管子歪斜,也可以加工成扁尖形;遇 土质很硬时,可将尖端加工成圆锥形。如选用角钢时,应采用不小于40mm*40mm*4mm 的角钢,切割长度不应小于2.5m,角钢的一端应加工成尖头形状。

(2)沟槽开挖:根据设计图要求,对接地体(网)的线路进行测量弹线,在此线路上挖掘深 为0.8~1m,宽为0.5m 的构槽,沟顶部稍宽,底部渐窄,沟底如有石子应清除。

(3)安装接地体(极):构槽开挖后应立即安装接地体和敷设接地扁钢,防止土方倒塌。先 将接地体放在沟槽的中心线上,打入地下。一般采用大锤打入,一人扶着接地体,一人 用大锤敲打接地体顶部。使用大锤敲打接地体时要平稳,锤击接地体正中,不得打偏,应与地面保持垂直,当接地体顶端距离地面600mm 时停止打入。

(4)接地体间扁钢敷设:扁钢敷设前应调直,然后将扁钢放置于沟内,依次将扁钢与接地体 用电(气)焊焊接。扁钢应侧放而不可放平,侧放时散流电阻较小。扁钢与钢管连接的 位置距接地体最高点约100mm。焊接时应将扁钢拉直,焊后清除药皮,刷沥青做防腐 处理,并将接地线引出至需要的位置,留有足够的连接长度,以待使用。

3、自然基础接地体安装:

(1)利用底板钢筋或深基础做接地体:按设计图尺寸位置要求,标好位置,将底板钢盘搭接 焊好,再将柱主筋(不少于2 根)底部与底板筋搭接焊,并在室外地面以下将主筋焊接 连接板,清除药皮,并将两根主筋用色漆做好标记,以便引出和检查。

(2)利用柱形桩基及平台钢筋做接地体:按设计图尺寸位置,找好桩基组数位置,把每组桩 基四角钢盘搭接封焊,再与柱主筋(不少于2 根)焊好,并在室外地面以下将主筋焊接 连接板,清除药皮,并将两根主筋用色漆做好标记,以便引出和检查。

4、接地体核验:

接地体安装完毕后,应及时请监理单位进行隐检核验(签署审核意见,并下审核结论),接地体材质、位置、焊接质量等均应符合施工规范要求。接地电阴应及时进行测试,当利用自然接地体作为接地 装置时,应在底板钢筋绑扎完毕后进行测试;当利用人工接地体作为接地装置时,应在回填土之前 进行测试;若阻值达不到设计、规范要求时应补做人工接地极。接地电阻测试须形成记录。

5、成品保护:

(1)其他工种在开挖土方时,注意不要损坏接地体。(2)安装接地体时,不得破坏散水和外墙壁装修。(3)不得随意移动已经绑扎完的结构钢筋。二)接地干线安装

1、接地干线安装的有关规定:

(1)接地干线在穿过墙壁、楼板和地坪处应加装钢管或其他坚固的保护套;有化学腐蚀的部 位还应采取防腐措施。在跨越建筑物伸缩缝、沉降缝处,应设置补偿器,补偿器可用接 地线本身弯成弧状代替。

(2)接地干线应设有测量接地电阻而预备的断接卡子。一般采用暗盒装入,同时加装盒盖并 做上拉地标记。

(3)接地干线应设有测量接地电阻而预备的断接卡子。一般采用暗盒装入,同时加装盒盖并 做上接地标记。

(4)每个电气装置的接地应以单独的接地线与接地干线相连接,不得在一个接地线中串联几 个需要接地的电气装置。

2、接地干线明敷时的有关规定:

(1)应便于检查。

(2)敷设位置不应妨碍设备的拆卸与检修。

(3)支持件间的距离,在水平直线部分应为0.5~1.5m,垂直部分应为1.5~3m,转弯部分应为0.3~0.5m。

(4)接地干线沿建筑物墙壁水平敷设时,离地面距离应为250~300mm,与建筑物墙壁间的间隙应为10~15m。

(5)接地干线应按水平或垂直敷设,亦可与建筑物倾斜结构平行敷设,在直线段上不应有高低起伏及弯曲等情况。

(6)明敷接地线表面应涂15~100mm 宽度相等的绿色和黄色相间的条纹。在每个导体的全部长度上或只在每个区间或每个可接触到的部位上应作出标志。当使用胶带时,应使用双色胶带。

3、室外接地干线敷设:

(1)首先进行接地干线的调直、测位、打眼、煨弯,并安装断接卡子及接地端子。(2)敷设前按设计要求的尺寸位置先开挖沟槽,然后将扁钢侧放埋入。回填土应压实,接地干线末端露出地面应不超过0.5m,以便接引地线。

2、室内接地干线敷设:室内接地干线多为明敷设,但部分设备连接的支线需经这地面也可以埋设 在混凝土内,具体做法如下:

(1)预留孔:按设计要求尺寸位置,预留出接地线孔,预留孔的大小应比敷设接地干线的厚度、宽度各大出6mm 以上,其方法有三种:

第一种:施工时可按上述要求尺寸截一段扁钢预埋在墙壁内,当混凝土还未凝固时,抽动扁钢以便凝固后易于抽出。

第二种:将扁钢上包一层油毛毡或几层牛皮纸后埋设在墙壁内,预留孔距墙壁表面应为15~20mm。第三种:保护套可用厚1mm 以上的铁皮做成方形或圆形,大小应使接地线穿入时,每边有6mm 以上的空隙。

(2)支持件的固定:支持件应采用40*40mm 的扁钢,尾端应制成燕尾状,入孔深度与宽度各为50mm,总长度为70mm。其具体固定方法如下:砖墙、加气混凝土墙、空砖墙上固定:根据设计要求先在墙上确定轴线位置,然后随砌墙将预制成50mm*50mm 的方木样板放入墙内,等墙砌好后将方木样板剔除,然后将支持件放入孔内,同时洒水淋湿孔洞,再用水泥砂浆将支持件埋牢,等凝固后使用。

现浇混凝土墙上固定:先根据设计图要求弹线定位、钻孔,支架做燕尾埋入孔中,调平正,用水泥砂将进行固定。

(3)明敷接地线安装:当支持件埋设完毕,水泥砂浆凝固后,可敷设墙上的接地线。将接地扁钢沿 墙吊起,在支持件一端用卡子将扁钢固定,经过隔墙壁时穿跨预留孔,接地干线连接处应焊接牢固。末端预留或连接应符合设计要求。

3、成品保护:

(1)电气施工时,不得磕碰及弄脏墙面。(2)焊接时注意保护墙面。

(3)在土建喷浆前,必须先将接地干线用纸包扎。(4)拆除脚手架或搬运物件时不得碰坏接地干线。

(三)支架安装

1、支架安装的有关规定:

(1)支架应有燕尾,角钢支架埋注深度不小于100mm,扁钢和钢支架埋深入不小于90mm。(2)防雷装置的各种支架顶部应距建筑物表面100mm ;接地干线支架的端应距墙面20mm。(3)支架水平间距不大于是1m(混凝土支座不大于2m);垂直间距不大于1.5m,各间距应 均匀,允许偏差30mm。转角处两边的支架距转角中心不大于250mm。(4)埋设支架所用的水泥砂浆,其配合比不应低于1:2。

2、支架安装:

(1)应尽可能随结构施工预埋支架或铁件。(2)根据设计要求进行弹线及分档定位。

(3)用手锤、錾子进行剔洞,洞口的大小应里外一致。

(4)首先埋设一条直线上的两端支架,然后用铅丝拉直线埋设其他支架。在埋设前应先把洞 内用水湿润。

(5)如用混凝土支座,将混凝土支座分档摆好,先在两端支架间拉直线,然后将其他支架用 砂浆找平找直。

(6)如果女儿墙预留有预埋铁件,可将支架直接焊在铁件上,支架的找直方法同前。

3、成品保护:

(1)剔洞时,不应损坏建筑物结构。(2)支架稳固后,不得碰撞松动。

(3)支架稳后应保护好,防止土建外墙装修或内墙喷浆时污染支架。

(四)避雷引下线敷设

1、避雷引下线需要装设断接卡子或测试点的部位、数量按图施工设计,无要求时按以下规定设置:(1)引下线扁钢截面不得小于25mm*4mm ;圆钢直径不得小于12mm。(2)建、构筑物只有一组接地体时,可不做断接卡子,但要设置测试点。(3)建、构筑物采用多组接地体时,每组接了体均要设置断接卡子。

(4)断接卡子或测试点设置的部位应不影响建筑物的外观且应便于测试,暗设时距地高度为 0.5m,明设时距地高度为1.8m;1.8m 以下部位应用竹管或镀锌角钢保护。断接卡子所用 螺栓直径不得小于10mm,并需加镀锌垫圈和镀锌弹簧垫圈。

2、避雷引下线暗敷设的有关规定:

(1)利用主筋作暗敷设引下线时,每条引下线不得少于两根主筋,每根主筋直径不能小于.12mm。每栋建筑物至少有两根引下线(投影面积小于50m2 的建筑物例外)。防雷引 下线最好为对称位置,例如两根引下线要做成“一”字形或以“乙”字形,四根引下线 要做成“I”字形,引下线间距离不应大20m,当大于20m 时应在中间多引一根引下线。(2)现浇混凝土内敷设引下线不做防腐处理。

(3)主筋搭接处按接地线要求焊接,当主筋连接采用压力埋弧焊、对焊、冷挤压、丝接时其 接头处可不焊跨接地线及其他的焊接处理。

3、避雷引下线暗敷设做法:(1)首先将所需扁钢(或圆钢)用手锤(或钢筋扳子)进行调直或扳直。将调直的引下线运到安装地点,按设计要求随建筑物引上、挂好,及时将引下线的下端与接地体焊接,或与断接卡子连接。如需接头则应进行焊接,焊接后应敲掉药皮并刷防锈漆(现浇混凝土除外)及银粉,最后请有关人员进行隐检验收,做好记录。

(2)利用主筋作引下线时,按设计要求找出全部主筋位置,用油漆做好标记,距室外地面0.5m 处焊接断接卡子,随钢盘逐层串联焊接至顶层,并焊接出屋面一定长度的引下线镀锌扁钢40*4 或.12 的镀锌圆,以备与避雷网连接。每层各引下点焊接后,隐蔽之前,均应请有关人员进行隐检,同时应填写隐检记录。

4、避雷引下线明敷设的有关规定:

(1)引下线应躲开建筑物的出入口和行人较易接触到的地点,以免发生危险。(2)引下线必须调直后方可进行敷设,弯曲处不应小于90°,并不得弯成死角。

(3)引下线除设计有特殊要求外,镀锌扁钢截面不得小于48mm2,镀锌圆钢直径不得小于 8mm。

5、避雷引下线明敷设做法:

(1)引下线如为扁钢,可放在平板上用手锤调直;如为圆钢放开,一端固定在牢固地锚的机具上,另一端固定在绞磨(或倒链)的夹具上进行冷拉直。

(2)将调直的引下线运到安装地点。

(3)将引下线用大绳提升到最高点,然后由上而下逐点固定,直至安装断接卡子处。如需接头或安装断接卡子,则应进行焊接。焊接后清除药皮,局部调直,刷防锈漆(或银粉)。

(4)将引下线地面以上2m 段套上保护管,卡固、刷红白油漆。(5)用镀锌螺栓将断接卡子与接地体连接牢固。

6、成品保护:

(1)安装保护管时,注意保护好土建结构及装修面。(2)拆架子时不要磕碰引下线。

(五)避雷网安装

1、避雷网安装的有关规定:

(1)避雷网卡固时应加镀锌弹垫、平垫。

(2)避雷线弯曲处不行小于90°,弯曲半径不得小于圆钢直径的10 倍。(3)避雷线如用扁钢,截面不得小于48mm2;如为圆钢直径不得小于8mm。(4)遇有变形缝处应做煨弯补偿。

2、避雷网安装做法:(1)避雷线如为扁钢,可放在平板上用手锤调直;如为圆钢,可将圆钢放开一端固定在 牢固地锚的夹具上,另一端固定在绞磨(或倒链)的夹具上,进行冷拉调直。(2)将调直的避雷线运到安装地点。

(3)将避雷线用大绳提升到顶部,调直、敷设、卡固、焊接连成一体,同引下线焊接。焊接的药皮应敲掉,进行局部调直后刷防锈漆及银粉。

(4)建筑物屋顶上有突出物,如金属旗杆、透气管、金屑天沟、铁栏杆、爬梯、冷却水 塔、电视天线等,这些部位的金属导体都必须与避雷网焊接成一体。顶层的烟囱应 做避雷带或避雷针。

(5)在建筑物的变形颖外应做防雷跨越处理。

(6)避雷网分明网和暗网两种,暗网格越密,其可靠性就越好。网格的密度应视建筑物 的重要程度而定。重要建筑物可使10m*10m 的网格;一般建筑物采用20*20m 的 网格即可。如果设计有特殊要求应按设计要求去做。

4、成品保护:

(1)遇坡顶瓦屋面,在操作时应采取措施,以免踩坏屋面瓦。(2)不得损坏外檐装修。(3)避雷网敷设后,应避免砸碰。

(4)避雷网敷设完毕后,应注意保护,防止外墙装修污染避雷线。

(一)避雷针制作与安装

1、避雷针制作与安装的有关规定:

(1)独立避雷针及其接地装置与道路或建筑物的出入口等的距离应大于3m,当小于3m 时,应采取均压措施或铺设暖石或沥青地面。

(2)独立避雷针应设置独立的集中接地装置。当有困难时,该接地装置可与接地网连接,但避雷针与主接地网的地下连接点至35kV 及以下设备与主接地网的地下连接点,沿接地体的长度不得小于15m。

(3)独立避雷针的接地装置与接地网的地中距离不应小于3m。配电装置的架构或屋顶 上的避雷针应与接地网连接,并在其附近装设集中接地装置。

(4)建筑物上的避雷针或防雷金属网应和建筑物顶部的其他金属物体连接成一个整体。(5)避雷针采用镀锌钢管制作针尖,管壁厚度不得小于3mm,针尖涮锡长度不得小于 70mm。

(6)避雷针应垂直安装牢固。

2、避雷针制作:(1)避雷针一般采用圆钢管制成,其直径不应小于下列数值:

独立避雷针一般采用.19 镀锌圆钢;屋面上的避雷针一般采用.25 镀锌钢管;水塔顶部避雷针圆钢直径为25mm,钢管直径为40mm ;烟囱顶上圆钢直径为25mm ;避雷环圆钢直径

为12mm ;扁钢截面长10mm,厚度为4mm。

(2)把放电尖端打磨光滑后进行涮锡。如针尖采用钢管制作,可先将上节钢管一端锯成锯齿形,用手锤收尖后,焊缝磨平、涮锡。

(3)按设计要求的材料所需的长度分多节进行下料,然后把各节管按粗细拼装起来,相邻 两节应把细管插入粗管中一段,插入长度一般为250mm。最后把各个接头用.12 铆钉铆

接或采用开槽焊接。接口部分应焊牢。(4)焊接后把避雷针体镀锌或涂银粉。

3、避雷针安装先北将支座钢板的底板固定在预埋地脚螺栓上,焊上一块肋板,再将避雷针立起、找直、找正后进行点焊,然后加以校正,焊上其他三块肋板。最后将引下线焊在底板

上,清除药皮刷防锈漆及银粉。

4、成品保护:

(1)拆除脚手架时,注意不要碰坏避雷针。(2)注意保护封建装修。防雷接地装置技术交底卡

防雷接地装置技术交底卡 1.

施工准备:

1.1 认真学习图纸设计要求和图纸会审资料。

1.2 学习国家有关防雷接地专业的规程规范《建筑物防雷设计规范GB50057-94》并做好施工技术交底工作。

1.3 准备施工用的工程材料(镀锌的园钢、扁钢、角钢支持卡子和各种螺栓附件)和施工工具(包括检测仪器)。

2.施工要求 2.1 施工内容:

2.1.1 防雷接地装置由接闪器、引下线、接地装置组成。

2.1.2 避雷针(带、网)及引下线和接地装置应采取自下而上的施工程序。

2.1.3 密切配合土建施工,做好预留孔洞,预留防雷接地铁件和防雷接地钢筋的焊接。2.1.4 建筑物内的设备、管道构架等主要金属物和防侧击雷的门窗、栏杆以及屋面 的金属物体必须接地焊接。2.2 施工工艺:

2.2.1 防雷接地体应采取焊接方法:①使用金属管作接地体时应在其串接部位焊接角形金属跨接线;②钢筋与钢筋交叉要用一条短园钢进行跨接焊接,焊接长度不小于园钢直径的6倍,园钢同扁钢的焊接必须进行三面焊接;③焊接处焊缝应饱满,要有足够的机械强度,不得有灰渣,咬肉裂纹虚焊气孔等缺陷,焊接处的药皮应敲 净。

2.2.2 接地体采取搭焊接时。其搭接长度必须符合以下要求:①扁钢为其宽的2倍以上;(三个棱边焊接)②园钢为其直径的6倍以上;(双面焊接)③园钢和扁钢连接,其长度为园钢直径的6倍。(三面焊接)2.2.3 人工接地体应采用园钢、扁钢、角钢、钢管等金属材料,必须符合以下要求:①园钢直径不小于10mm;②扁钢截面不小于100平方毫米,厚度不小于4毫米;③角钢厚度不小于4毫米;④钢管壁厚不小于3.5毫米。

2.2.4 利用建筑物钢筋做防雷引下线时:①上部与接闪器焊接,下部与基础防雷地线焊接,不能绑接;②下部在室外地坪下0.8~1m处焊一根直径12mm或-40×4镀锌导体伸向室外墙边的距离不小于1m,以备室外人工接地体使用(按图纸设计确定)。③下部在室外地坪上不低于0.3m处焊接一接地体连接板,供防雷接地电阻测量和以备室外防跨步电压工程用(按图纸设计确定)。④接地电阻值应小于设计要求,当利用柱基作接地体不能满足要求时应埋没人工接地体。⑤建筑物钢筋柱内,钢筋直径16mm以上的可用二根作为一组引下线,钢筋直径10mm以上的应用四根为一组作引下线。具体做法按设计要求。⑥防雷专用的引下线暗敷时,引下线扁钢截面不得小于25×4mm园钢直径不得小于12mm,引下线必须在距地面1.5~1.8m处做断接卡子(一

条引下线除外)断接线卡子所用镀锌螺栓的直径不得小于10mm,并需加镀锌弹簧垫圈,并安装一个有标识的接地电阻检测盒。⑦施工操作时应按图纸设计要求截出柱、桩、位置和柱、桩内所用钢筋的位置用油漆作好标志,按照施工进度层都要在相同的钢筋上作好油漆标志,以免错接。

2.2.5 建筑物内的电气设备和建筑物天面的设备管道,突出构架以及需防铡击雷的门窗必须做好接地,需防雷的金属门窗应有两处与接地线相连,天面的金属管道应有两处接地。

2.2.6 天面明装避雷网(带)和支撑不能焊接,必须按广州市建设工程质量通病治理措施的规定彩专用支持件。

2.2.7 除混凝土中的铁件外,其它接地用的材料和配件都宜用镀锌件。2.2.8 屋面避雷针固定一定要焊接牢靠,针尖应搪锡或镀锌。2.2.9 进出建筑物的金属管道和电源穿线钢管均应与接地装置相联。

2.2.10接地干线的接线柱应该明敷在外,与绝缘导线PE线应紧密联接,联接处应有明显的接地标记。2.2.11电气设备上的接地线应采用专用的接地线,并用镀锌螺栓将接地线牢固地接在电气设备的金属体上。

2.3 防雷测试:防雷接地电阻的测试,应采用有效的接地电阻测量仪器(接地电阻摇表)进行测试,测试后应及时填写《建筑物和构筑物防雷接地电阻检测记录》

并请建设单位派代表和监理公司代表进行检查和签证,同时通知广州市防雷监测部门来工地进行防雷接地电阻检查测试和确认。3.安全规定

3.1 参加安装人员必须遵守安全操作规程,穿戴好劳保用品,交叉作业时注意戴好安全帽,作好安全防护。3.2 所有机具均完好,不得带病运行。接地及保护必须良好。3.3 电焊工施工时要注意与其它工种配合,防止弧光灼伤眼睛。3.4 严禁上下抛掷物件和工具,工具应随手放入袋内。

7.接地材料技术规范 篇七

接地网接地材料多为碳钢或带涂镀层的碳钢,耐蚀性较差,屡次引发变电站接地事故。铜材具有良好的导电性和耐蚀性,已成为一些新建大型变电站的接地材料。土壤是一种复杂的多相体系,同一地区不同深度的土壤,其理化性质,如含氧量、微生物腐蚀性、p H值、电阻率等可能差别很大。气候变化也会影响土壤的理化性质,如降雨可能导致不同深度土层盐类分布差异[1]。因此,埋地深度成为接地网防腐蚀的重要指标。目前,针对接地网材料腐蚀的研究多偏重于实际应用效果分析,理论研究较少,埋地深度对材料腐蚀影响的研究则更少。本工作研究了不同埋地深度下铜质接地网的腐蚀特性,分析了不同深度土层理化性质差异对腐蚀的影响,以期对接地网防腐蚀提供一定的参考。

1 试 验

1. 1 电极材料

所用材料为紫铜,尺寸为ø6 mm×5 mm,化学成分( 质量分数,% ) : P 0. 07,Ni 0. 02,Si 0. 04,Fe 0. 08,Zn 0. 09,S 0. 09,Ag 0. 10,余量为铜。试片一圆面焊接铜导线,另一圆面为工作面。将3根焊接好的紫铜电极用环氧树脂封装,呈三角形分布,彼此间距约为1mm组成三电极体系。封装完成后用砂纸将电极工作面逐级打磨至800目,依次用丙酮和酒精擦洗,放入干燥器中备用。

1. 2 土样及腐蚀条件

在湖南某变电站选点开挖土层,从地面以下60cm深处取土样,经烘干研磨,过20目筛,盛入直径45cm、深60 cm的塑料桶。填土入桶,于表层喷洒除盐水( 25℃时电阻率18 MΩ·cm,下同) 模拟自然条件下的降雨气候,并使土样含水率约为20% 。待水分渗透均匀后埋入紫铜电极,埋地深度分别为25,45 cm,埋地70 d。

1. 3 测试分析

2种深度各取土样约200 g,用除盐水按水土比3∶1混合浸泡,取上部清液测量p H值并用IC -1100离子色谱仪分析其离子含量。

采用Gamry电化学工作站进行电化学测量,采用上述3根紫铜电极组成的三电极体系: 交流阻抗扫描频率为1× ( 105~ 10- 2) Hz,幅值5 m V; 线性极化扫描范围为相对开路电位±10 m V。

对腐蚀后的紫铜电极采用JSM -5600LV扫描电子显微镜( SEM) 观察其微观形貌。

采用JPS-9200型X射线光电子能谱仪( XPS) 分析紫铜电极腐蚀后表面腐蚀产物元素价态和化合成分,采用的铝Ka微聚集单 色器为X射线源,分辨率0. 5 e V。

2 结果与讨论

2. 1 不同深度土层的理化性质

不同深度土样的理化性质分析结果见表1。试验用土为碱性土壤,由于空气中CO2的溶入,使得表层土壤的p H值比深层的略低。不同深度土壤中的离子含量有较明显的差异,在喷洒除盐水湿润土壤的过程中,上层土壤中的可溶性盐随水分向深层迁移。其中Cl-,NO3和SO24等溶解度大、迁移力强[2]的离子在45 cm深的土层中富集。Mg2 +和Ca2 +由于在水中溶解度低,迁移作用微弱,其含量在2个深度土层中没有明显差异。2个土层的含水率均为20% 左右,说明水分已经扩散均匀; 2种深度土层的氧化还原电位Eorp均大于400 m V,土壤基本没有微生物腐蚀性[3];电阻率均在2 000 ~ 10 000Ω·cm,属于中等腐蚀性土壤[3]。

试验周期内土壤温度的变化见图1。可见2种深度土层温度相差基本在1. 0℃以内,腐蚀前10 d土壤温度在20℃附近波动,15 d以后下降至16℃左右并维持稳定。

2. 2 不同深度土层中电极的腐蚀

2. 2. 1 交流阻抗

紫铜在2种深度土层中腐蚀的Nyquist曲线见图2; 其等效电路见图3。其中,R0为土壤电阻; Qf为钝化膜电容; Qdl为界面双电层电容; Rf为钝化膜电阻; Rt为电荷传递电阻; W和Wp为Warburg阻抗。钝化膜电阻Rf值随时间的变化曲线见图4。

土壤中腐蚀介质扩散阻力较大,加之碱性环境下紫铜表面形成的钝化膜使紫铜在腐蚀初期即表现出明显的Warburg阻抗特征。紫铜钝化膜的形成可分为Cu2O膜的生成和Cu2O转化生成Cu O膜2个过程[4]。Cu2O是一种结构紧密、具有半导体特性的氧化膜,对基体有良好的保护作用。在紫铜的腐蚀过程中,一般首先在紧贴基体的表面生成一层Cu2O膜; 随着氧气氧化及腐蚀性离子的侵蚀作用,Cu2O膜进一步被氧化成Cu O。Cu O膜致密程度较差且基本不具有半导体特性,对紫铜的保护作用较差。

( 1) 25 cm深处土层由于试验前期洒水润土过程中的水力淋洗作用,使得此处的离子含量较小,紫铜在埋地后表面很快形成了一层保护膜。另外,浅层土壤中含氧量较高亦可能是促进紫铜迅速成膜的原因。在腐蚀第1周,紫铜表面钝化膜以Cu2O为主,钝化膜较致密,Nyquist曲线低频端表现为无限扩散层Warburg阻抗( Infinite Warburg) 特征。随着腐蚀的进行,钝化膜逐渐增厚,7 d时Rf值上升至试验周期内的最大值( 1. 48×106Ω·cm2) 。同时,氧气的氧化使一部分Cu2O膜转化成Cu O膜,此时Nyquist曲线低频端表现为可渗透有限扩散层Warburg阻抗( Porous Bounded Warburg) 特征,此类Warburg阻抗的出现表明钝化膜阻隔能力有所下降,部分穿透力强的离子( 如Cl-等) 可渗透穿过钝化膜到达金属基体。从第7 d开始,钝化膜电阻Rf值整体呈下降趋势,说明由Cu2O转化生成的Cu O膜越来越多。Cu O膜结构疏松,附着力差,容易脱落,导致膜层电阻值下降。

( 2) 45 cm深处土层紫铜在45 cm深土层中腐蚀,前2周紫铜Nyquist曲线无明显的Warburg阻抗特征,第20 d开始,阻抗低频端逐渐呈45°线性,腐蚀过程由扩散控制。45 cm深处土层盐类离子含量较高,Cl-,NO3等的侵蚀使钝化膜的生长比较困难。另外,深层土壤的厌氧环境也使铜的氧化反应不易进行。45 cm深处土层中钝化膜电阻Rf值在埋地34 d后才上升至106Ω·cm2数量级,41 d后达试验周期内的最大值。与25 cm深处土层中钝化膜的“快速形成,快速破坏”现象不同,45 cm深处土层中钝化膜虽然生长缓慢,但整个试验周期内Rf值基本呈上升趋势,在达最大值后无明显下降,并稳定在3. 50×106Ω·cm2左右。从第20 d开始,45 cm深处土层紫铜腐蚀过程受扩散控制,Nyquist曲线低频端始终表现为无限扩散层Warburg特征,说明钝化膜致密性较好,没有发生明显的Cu2O膜层转化。

2. 2. 2 腐蚀产物形貌及成分

25,45 cm深处土层中紫铜腐蚀70 d后的表面腐蚀产物及Cu元素的XPS谱见图5,表面SEM形貌见图6。

( 1) 25 cm深处土层腐蚀产物的XPS谱中Cu的2P3 /2和2P1 /2杂化轨道电子受光电子激发后分别在932. 53 e V和952. 38 e V处产生特征峰[5]( 见图5a) ;Cu元素XPS谱显示,在2P3 /2和2P1 /2峰之间并未出现特征卫星峰( 见图5b) ,说明Cu以Cu+或Cu0价态存在[6]。紫铜表面几乎呈“裸露”状,腐蚀前打磨留下的痕迹清晰可见,试片表面零星分布着细小的点蚀孔( 见图6a) 。这些现象表明在腐蚀过程中,转化生成的Cu O膜致密性较差,引发了紫铜的点蚀,并在腐蚀后期脱落,紫铜表面仅剩一层厚度极薄的Cu2O膜。

( 2) 45 cm深处土层XPS谱表明,45 cm深处土层中紫铜表面钝化膜为Cu2O膜,且Cu2O的量明显高于25 cm深处土层。试片表面平整致密,有完整的钝化膜覆盖,无明显点蚀坑( 见图6b) ,这与EIS谱的分析结果相吻合。

2. 2. 3 极化曲线

紫铜在2种深度土层中腐蚀的线性极化曲线见图7。土壤介质较大的传质阻力和钝化膜的阻隔作用,使紫铜腐蚀过程受阴极扩散控制,阴极极化曲线不呈线性。本研究中以紫铜材料为参比电极,测量过程中参比电极电位会有小幅变化,因此图7中线性极化曲线不过原点。

极化曲线线性段的斜率即极化电阻Rp随时间的变化曲线见图8。25 cm深处土层中Rp在第1周就达到最大值,随后缓慢下降并趋于稳定。45 cm深处土层中Rp值在前期较小,紫铜腐蚀速率较快,这与45 cm深处土层中的离子含量及腐蚀前期土温较高有关。随着钝化膜的生成及土温的降低,Rp值逐步上升,在41 d时大幅升高。Rp随时间的变化关系与交流阻抗谱、腐蚀产物形貌及成分分析得出的钝化膜生长过程相吻合,且与Rf的变化规律一致。对比2种深度土层Rp随时间变化曲线可知,在腐蚀前3周,2种深度土层中紫铜的腐蚀速率差异不大; 30 d后45 cm深处土层中紫铜腐蚀速率开始显著降低,而25 cm深处土层中紫铜仍维持较快的腐蚀速率并趋于稳定。

对腐蚀70 d后的紫铜进行Tafel极化,测得Tafel斜率: ba= 55. 60 mV / dec,bc= 37. 04 m V / dec。由Jcorr=babc/[Rp( ba+ bc) ]计算得腐蚀70 d后,25 cm深处土层紫铜腐蚀电流密度为91. 01 n A/cm2,45 cm深处土层紫铜腐蚀电流密度为7. 56 n A/cm2,两者相差约13倍。

3 结 论

( 1) 不同土壤深度其理化性能不同,水力淋洗使盐类离子在深层土壤中富集。

( 2) 埋地深度对紫铜在土壤中的腐蚀速率有较大的影响。腐蚀前3周,埋地25 cm和45 cm紫铜腐蚀速率相差不大; 30 d后,埋地45 cm紫铜腐蚀速率明显下降,而埋地25 cm紫铜腐蚀速率仍较高。腐蚀70 d后,埋地45 cm紫铜腐蚀电流密度降至7. 56 n A/cm2,埋地25 cm紫铜腐蚀电流密度为91. 01 n A / cm2。

( 3) 埋地25 cm紫铜表面钝化膜形成迅速,约1周时间即可生长完成,但很快遭受破坏; 致密的Cu2O膜大量转化成Cu O膜,膜层阻隔能力下降,引发紫铜的点蚀,钝化膜在腐蚀后期大面积脱落。埋地45 cm紫铜表面钝化膜形成缓慢,至41 d钝化膜才生长完成; 但膜层致密,保护性强,主要为Cu2O膜,未发生明显膜层转化,紫铜试片无点蚀现象,钝化膜覆盖完整。

摘要:埋地深度是接地网防腐蚀的重要指标,目前对其研究较少。采用交流阻抗谱(EIS)、线性极化法研究了紫铜材料在不同深度土壤中的电化学腐蚀特征,分析了不同深度土壤理化性质的差异对钝化膜生长过程及紫铜腐蚀速率的影响;通过扫描电镜(SEM)和X射线光电子谱(XPS)技术检测了腐蚀后紫铜的表面状况和腐蚀产物的元素价态及成分。结果表明:水力淋洗使盐类离子在深层土壤中富集;紫铜在埋地25cm深处钝化膜仅需1周即可生长完成,氧气的氧化使致密的Cu2O膜转化生成CuO膜,膜层保护作用较差,引发紫铜的点蚀,腐蚀后期钝化膜大面积脱落;埋地45cm深处紫铜钝化膜生长缓慢,长达41d,但膜层完整致密,保护作用强,其主要成分为Cu2O;腐蚀70d后,埋地25cm紫铜腐蚀电流密度为91.01nA/cm2,而45cm深处紫铜仅为7.56nA/cm2。

关键词:土壤腐蚀,埋地深度,紫铜,Cu2O膜,CuO膜,膜层电阻

参考文献

[1]张兰河,张雪峰,张万友,等.吉林市船营区土壤中变电站接地网的腐蚀性研究[J].腐蚀科学与防护技术,2013,25(2):127~132.

[2]郭全恩.土壤盐分离子迁移及其分异规律对环境因数的响应机制[D].杨凌:西北农林科技大学,2010:37~38.

[3]吴荫顺,方智,曹备,等.腐蚀试验方法与防腐蚀检测技术[M].北京:化学工业出版社,1995:103~104.

[4]徐群杰,朱律均,齐航,等.Cu的腐蚀与缓蚀的光电化学研究[J].金属学报,2008,44(11):1 360~1 365.

[5]Wagner C D,Riggs W M,Davis L E,et al.Handbook of X-Ray Photoelectron Spectroscopy[M].Minnesota:PerkinElmer Corporation,1979:211~213.

8.电气设备的接地技术研究 篇八

关键词电气设备接地概念接地型式

凡是电气设备或设施的任何部位(不论它带电或不带电)人为地或自然地与零电位的“地”相连通,便称为“接地”。

接地是电气设备安全的核心技术。但电气设备的接地并不是孤立的,它和电气设备的网管系统的接地,电气设备的供电系统的接地,电气机房的接地,电气线路的接地等是彼此关联的[1,2]。因此,必须用系统的观念来全面认识电气设备的接地。

1接地的型式[3,4]

1.1通信设备的接地型式

通信设备主要是电子设备,电子设备的接地一般有三种:信号接地、功率接地、保护接地。根据需要,有可能还包括重复接地、屏蔽接地、防静电接地等,这时它们可以和保护接地统称安全接地。电子设备的接地型式一般根据其工作频率和设备到接地母线或总接地端子(板)等上的接地引线长度来决定,主要有以下几种:

(1)当接地引线长度小于波长二十分之一,频率在1MHZ以下时,一般采用辐射式(星形)接地系统。

这种接地系统是将电子设备的信号地、功率地、保护地分开,用绝缘接地引线分别先接到电源室总接地端子(板)上,再引至接地体。

这种接地系统又叫“一点接地系统”或“单点接地系统”。 这种接地型式的特点是不同接地之间的接地引线路由分开,尽可能避免回路间的耦合影响,减少干扰环流。多用于低频电子设备的接地。

(2)当接地引线长度大于波长二十分之一,频率在10MHZ以上时,一般采用环状(网形)接地系统。

这种接地系统是将电子设备的信号地、功率地、保护地都接在一个公用的环状(网形)接地母线上,再引至接地体。

这种接地系统又叫“多点接地系统”。 这种接地型式的特点是不同接地之间的接地引线在较多点互相连接起来,不会产生的电位差,减少了通信回路的干扰。多点接地系统适用于高频电子设备的接地,这是因为高频电路由于频率高,耦合电容增加,即使信号地、功率地、保护地的接地引线分开,高频干扰信号仍能藕合过去,因此几种地较难真正分开。

(3)当接地引线长度等于波长二十分之一,频率在1MHZ到10MHZ之间时,可以采用混合式接地系统。

辐射式(星形)接地系统与环状(网形)接地系统相结合的接地系统称为混合式接地系统。这种接地型式的采用是辐射式接地引线将电子设备的信号地、功率地、保护地分开,在机壳或机架上汇接一点,然后再把若干设备的汇接点接至公用的环状(网形)接地母线上,再引至接地体。多用于电子仪表等的接地。

1.2计算机设备的接地型式

以计算机设备为主的现代通信设备的网管系统自成体系,因此计算机设备的接地与通信设备的接地密切相关。计算机设备一般有三种接地:逻辑地、功率地、保护地。根据需要,有可能还包括重复接地、屏蔽接地、防静电接地等,这时它们可以和保护地统称安全地。计算机设备的接地型式实际上是逻辑地与其它地的关系,一般有四种型式。

(1)悬浮接地系统:

即计算机逻辑地不接大地,与大地严格绝缘。采用直流地悬空的理论依据是:可以避免地磁场及地电位差的影响,不使其形成回路而造成噪声耦合;同时逻辑地与交流功率地分开,可以避免交流电网的干扰以及仪器仪表、检修工具等漏电进入计算机造成的干扰。

悬浮接地又有两种型式:一种是电路设计上“地电位点”,机内各个悬浮电路均分别有各自独立的基准电位,悬浮电路之间保持严格隔离,(依靠电感线圈的磁场耦合来传递信号);整个设备包括机壳都与大地绝缘隔离。另一种是将机柜固定在地板上,由于空气干燥时,积聚在机柜上的静电荷将对某些地电位点放电造成干扰,因此可以将机柜保护地与逻辑地分开而将机柜外壳接地。

(2)交直流接地系统:

这种接地系统是把逻辑地与直流功率地合接在一起,接在单独接地网上(即将计算机的直流地用编织铜线或多股铜线连接成地网,再用接地线引出机房外,焊接到单独的接地体上,有称分支式直流工作地布局);交流功率地和保护地合接在一起,接到单独的接地网及接地体上,或交流功率地通过电容器与逻辑地、直流功率地联接在一起,接在单独的接地网及接地体上。这两种作法都可以避免交流电网的干扰。

(3)一点接地系统:

这种接地系统是将逻辑地、功率地、保护地分开,相互绝缘并分别与(地板下)铜排网或格栅均压网相联,然后通过同一点(如电源室总接地端子板上)再接到接地体上。这种接地系统的优点是通过铜排网或格栅均压网来使逻辑地有一个统一的相对稳定的基准电位(零电位),减少了相互干扰,同时静电荷得到了泄漏。

(4)联合接地系统:

这种接地系统是将逻辑地、功率地、保护地均接到机柜内专用接地端子上,然后通过保护地或交流功率地的接地引线接地。这种接地系统的优点是安装简单,只需将符合要求的接地引线接到接地端子上即可。

1.3配电系统的接地型式

通信设备由低压配电系统直接或间接供电,其接地安全与低压配电系统的接地型式往往密切相关。低压配电系统的接地一般可以区分为工作接地和保护接地,保护接地又可以分为“接地”和“接零”两种(这里“接地”具体指受电设备的外露可导电部分对地直接的电气连接;而“接零”指外露可导电部分通过保护线(PE线)或保护中性线(PEN)与低压配电系统的接地点(即中性点)进行直接的电气连接。)。其接地型式一般有以下三种:

(1)TN系统:电源端有一点直接接地,受电设备的外露可导电部分通过保护线(PE线)或保护中性线(PEN)与电源端的接地点相连接,且必须将能同时触及的所有受电设备的外露可导电部分接至同一接地装置上。

按照中性线(N)与保护线(PE线)的组合情况,又可分为三种型式:TN—S系统,整个系统的中性线与保护线是分开的;TN—C系统,整个系统的中性线与保护线是合一的;TN—C—S系统,系统中前一部分的线路的中性线与保护线是合一的,然后从某点(一般为进户处)分开后不再合并,且中性线与相线绝缘水平相当。

nlc202309031439

TN—S系统和TN—C—S系统,中性线N必须与设备机架、机壳、机盘和全部建筑物钢筋等严格绝缘。为防止中性线断线造成的危险,可以做重复接地。

(2)TT系统:电源端有一点直接接地,受电设备的外露可导电部分通过保护线直接接至与电源端接地点直接无关的接地极。

(3)IT系统:电源端的带电部分与大地无直接连接(或有一点经足够大的阻抗接地),而受电设备的外露可导电部分可以通过保护线接至接地极。也称为“不接地系统”。

在IT系统中的任何带电部分(包括中性线)严禁直接接地;系统中的电源系统对地应保持良好的绝缘水平。

1.4通信机房的接地型式

通信机房的接地是为通信设备及其相关设备的接地服务,主要是提供基准电位参考点并确保设备的安全运行。常见的接地型式有以下两种:

(1)一点接地系统:即所有要接地的设备接地线都绝缘地接到一个单独的接地汇集点上,从而为所有设备提供一个公共参考点,不受地电流和电位差的影响;同时将设备的电容、电阻、电感、变压器等元件和机壳之间在机壳上进行一点接地,以便使杂散电容短路,保持元件底板或外壳与机壳的等电位。

这个接地汇集点一般是总接地端子板,它向外用绝缘接地引线与机房外的接地体或闭合环形接地网连接,向内用绝缘接地引线与机房内的接地端子板或接地母线连接,再从接地端子板或接地母线引出绝缘接地线与设备的机壳或机架内的接地螺栓连接。单个机房等情况时往往省去接地端子板或接地母线这个环节;同一楼层有多个机房时,必须在楼层增设楼层接地排这个环节(供同一楼层内的所有设备的绝缘机架及共用的电源设备使用,且交流电缆金属外皮或金属管道也必须通过接地排接地后再进入机房)。

(2)共用接地系统:即将不同设备和不同接地点的接地线,在较多点互相连接起来,形成一个等电位面,不致产生较大电位差,减少通信回路干扰并防止雷电等过电压反击。

现在多层建筑一般利用钢筋作为避雷引下线,若想将建筑物的防雷接地系统与通信设备等的接地系统从电气上真正分开,两接地体必须保持20米以上(在单根接地极时,距接地极20米处才可近似看成零电位)且设备极其有电气连系的各中线缆、金属管道等也必须与钢筋等保持一定距离绝缘,以防雷电反击、闪击、电位差干扰等。这实际上难以做到,经济上也不合算。而采用共用接地系统则可以避免这些情况。即使有外来干涉干扰,其参考电平也会跟着浮动。

共用接地系统一般是建筑物的主钢筋互相焊接成一个法拉第笼,在建筑物顶敷设闭合避雷带(网),在建筑物外敷设闭合环形接地网,在楼层敷设闭合均压网,在机房内敷设环形接地母线,上述带、网、线、主钢筋之间应多点且均匀分布连接。机房内设备的各种接地,电缆金属外皮、金属管道、金属结构等都要与环形接地母线多点且均匀分布连接。

1.5通信线路的接地型式

通信线路(一般分为信息线路和供电线路,供电线路包括低压交流线路和直流线路两种)的接地主要是防雷、防静电、防电磁干扰、防强电误碰等,全长地埋电缆还要防腐蚀,有的线路还要提供零电位。即有防雷接地、防静电接地、屏蔽接地、保护接地,及防腐蚀接地、工作接地等。其接地型式单一,即将电缆金属外皮或屏蔽层两端接地且每隔一定长度接地;架空电缆进入通信站(通信机房等)前还要入地直埋一定长度和深度并两端接地;线路的其它设施(如电杆、钢绞线、分线箱、接头盒等)也要接地等。具体作法详见有关规程。

2接地型式的选择及注意问题

无论采用哪种接地型式,接地引线长度等于四分之一及其奇数倍的情况应避开。电子设备接地电阻值除另有规定外,一般不宜大于4Ω并采用一点接地方式。电子设备接地宜与防雷接地系统共用接地体,但此时接地电阻值不宜大于1Ω;若与防雷接地系统分开,两接地系统的距离不宜小于20m。

为防止干扰,使计算机系统稳定可靠地工作,无论计算机直流地采用何种接地型式,其接地线在机房内不允许于交流工作接地线相短接或混接,也不允许与交流线路紧贴或近距离平行敷设。另外,计算机设备的三种接地的接地电阻一般要求均不大于4Ω;三种接地装置可以分开设置,但此时彼此之间的距离不宜小于20m。通常情况下,计算机设备的接地不宜采用悬浮接地系统,而采用联合接地系统,其接地系统的接地电阻应以诸种接地装置中最小一种接地电阻值为依据。若与防雷接地系统共用,接地电阻值应不大于1Ω。

同一低压配电系统中,不宜同时采用两种接地型式。但当全部采用TN系统确有困难时,也可部分采用TT系统;但采用TT系统供电部分均应装设能自动切除节电故障的装置(包括漏电电流动作保护装置)或经由隔离变压器供电。在选择低压配电系统的接地型式时,应根据其安全保护所具备的条件及所供电的通信设备的实际情况来确定:

(1)IT系统一般用于有特殊安全要求的场合如井下,纺织车间等,通信设备一般不采用IT系统这种接地型式。

(2)TN—C系统因其中性线(N)与保护线(PE线)合为PEN线,具有简单、经济的优点,但PEN线带有电位(运行中的PEN线不仅要通过正常负荷电流,有时尚有三次谐波电流通过),可能产生杂音干扰,通信设备等电子设备不宜采用;另外,当PEN线断线或相线对地短路等事故发生时,故障电压会沿PEN线串击,从而使事故范围扩大。

(3)TN—S系统,PE线不通过正常负荷电流,避免了交流电网的干扰,可以用于通信设备等电子设备;绝缘损坏时短路故障电流大,易使保护装置动作来切除故障。但不能解决对地故障电压蔓延和相线对地短路引起的中性点电位升高或位移等问题。

(4)TN—C—S系统电源结构简单,又保证一定的安全水平(建筑物内的PE线消除了电源线路的PEN线上的电压降),也可以用于通信设备等电子设备。

(5)TT系统内,由于设备的外露可导电部分采用单独的接地体接地,和电源的接地在电气上没有联系,避免了故障电压会沿PEN线串击的危险;也适用于对接地要求较高的通信设备的供电。因为即使采用TN—S系统,也会因装置的正常泄漏电流引起微量电位变化,影响电子电路的正常工作,而TT系统因其和电源的接地在电气上无联系,因而不会发生这类问题。但TT系统绝缘损坏时短路故障电流小,必须用较灵敏的漏电保护装置和较小的接地电阻(不大于1Ω)才能确保设备安全。

nlc202309031439

(6)当专用变压器位于通信设备所在建筑物院内或建筑物内等时,只能采用TN—S系统供电;无论是采用TT系统还是TN—S系统哪种接地型式,通信设备及相关系统都不得采用中性线(N)作为保护线且中性线(N)必须采用绝缘导线。

一点接地要求机房内的所有设备及其接地线都必须与建筑钢筋、电缆管道、其它金属结构或管道等保持绝缘。一点接地还要求直流地及直流功率地的接地装置与交流工作地及防雷地的接地装置分设。但当机房所在建筑物利用钢筋等金属构件作为防雷引下线时,则合设接地装置;或当设备不易作到与站内各种金属构件绝缘时,也应合设接地装置。上述各种地的绝缘接地线可以在总接地端子板处或建筑物外闭合环形接地网处联接在一起。一点接地系统抗交流电网干扰及地电位干扰能力较强,但实施比较困难。现在通信机房一般采用共用接地系统。

3结束语

通过电气设备接地技术的分析,在实际工程中做到正确的选择接地型式,对需要注意的问题要进行合理的分析,在此基础上对接地的具体做法进行科学施工,从而提升设备的电气安全。

参考文献

[1] 傅洪畴,低压电气安全,中国标准出版社,1994

[2] 叶佩生,计算机机房环境技术,人民邮电出版社,1999

[3] GB 50057—94《建筑物防雷设计规范》

[4] JGJ/T 16—92《民用建筑电气设计规范》

Research of Electrical Equipment Grounding Techniques

Liu Junle

(Zhongshan Power Supply Bureau,Zhongshan 528400,China)

AbstractThe grounding concept of electrical equipments are stated first. Then the grounding patterns are analyzed detailedly. Finally the problems in choosing grounding pattern are discussed systematically.

Key wordselectrical equipment ,grounding concept,grounding pattern

(收稿日期:2012年7月21日)

上一篇:搬迁补偿款会计与税务处理差异比较下一篇:国庆中秋九寨沟旅游线路推荐