盾构法施工控制要点

2024-09-15

盾构法施工控制要点(共8篇)

1.盾构法施工控制要点 篇一

盾构隧道施工技术可在极少干扰城市正常功能的前提下,安全快速的完成隧道施工,已成为城市修建地铁隧道及穿越江河隧道的首选施工方法。然而,由于地铁车站设置、穿越上覆建筑物等条件制约,隧道的设计轴线在空间上不可能全部为直线或缓和曲线。一般的城市地铁线路正线最小曲线半径在300 m~600 m之间,困难条件下可设置为250 m~300 m之间的急曲线,目前已有曲线半径小于250 m的施工工况,如广州地铁5号动物园站—杨箕站的曲线半径已达到200 m。因此,研究盾构在急曲线半径条件下的盾构施工控制技术,对于提高盾构隧道施工质量,降低施工风险具有重要意义。

1 盾构施工控制技术

1.1 盾构设备选型

盾构机作为最重要的隧道开挖设备,其设备选型及构造决定了能否顺利完成隧道开挖使命。由于盾构机自身为直线形刚体,在施工过程中并不能与隧道设计曲线完全拟合。在曲线段盾构掘进只能为一段连续的折线,呈现“蛇形”线路。盾构机体越长,与设计曲线拟合的难度就越大,隧道轴线越难控制。因此,当盾构机体长度不能满足急曲线施工的情况下,选用具有铰接装置的盾构机。铰接装置通过液压油缸行程的不同,可以使盾尾和中前盾中心线之间形成一定夹角,从而让盾构机预先推出弧线姿态,与隧道设计曲线趋于吻合,为管片提供良好的拼装空间。

1.2 井下水平运输设备

井下水平运输设备主要由电瓶车、渣土车、浆液车和管片车组成,并在铺设的轨道上行驶。隧道曲线半径越小,水平运输设备的穿行能力就越小。因此选用的单节车体长度和宽度应较小,必要时可使用转向装置等措施增加其通行能力。

1.3 管片选型及姿态控制

盾构隧道最终是由管片分块成环,继而由环间纵向连接成衬砌。因此在曲线段需选用楔形管片。利用管片楔形量和管片拼装的旋转角度进行隧道转弯和纠偏。隧道曲线半径越小,需要的管片楔形量越大。然而楔形量过大,则衬砌拼装后隧道容易产生渗漏水现象。因此,为保证隧道拼装质量,应合理选择管片的楔形量,应减小管片宽度,使成型隧道轴线与设计线形尽量保持吻合。

盾构在急曲线段掘进过程中,曲线外侧盾尾间隙很小,曲线内侧盾尾间隙很大,造成曲线外侧管片拼装困难和隧道轴线难以控制。在盾构掘进过程中,应采取措施使左右两侧盾尾间隙接近正常值,让管片保持较好的姿态,使管片姿态和盾构机状态保持一致。若通用环形式管片,必要时可采用几环通缝拼装来替代错缝拼装,来弥补错缝拼装后楔形量不足的问题,从而实现管片衬砌顺利转弯。

1.4 施工测量

在盾构施工中,测量是决定盾构姿态控制的重要环节。在盾构进入缓和曲线前、在缓和曲线上、进入急曲线段前必须分别进行隧道贯通联系测量。即通过地面控制网复测、竖井联系测量和隧道内导线测量对盾构的掘进方向进行复核,为盾构在曲线段施工时姿态控制提供依据。同时,在急曲线上要加强测量频率,了解盾构掘进状态,调整掘进参数,使盾构在急曲线段施工完全处于受控状态。由于急曲线段的曲线半径小,隧道内可视距离变短,导致盾构VMT导向系统测量移站频率增加,且测量站安装在尚未稳定的管片上,测量数据极易变动,更应增加测量频率,及时调整VMT系统数据。

1.5 设备检修

盾构在进入曲线段前,尤其是急曲线段前,应对设备进行全面检测及维修,特别是刀具磨损、损坏检修,从而为曲线段一次性通过创造条件。同时在曲线段掘进过程中,密切注意掘进速度、刀盘扭矩等参数变化,确保各种刀具特别是边缘仿形刀的正常使用。

1.6 曲线拟合

由于盾构在曲线段施工时,隧道轴线与管片端面法线会形成一定角度,使推进油缸顶力产生侧向分力。曲线半径越小,侧向分力越大。受侧向分力影响,当管片环脱出盾尾后,会向曲线外侧产生一定的偏移。因此,为使隧道轴线最终偏差处于要求范围内,需在曲线段掘进时向曲线内侧预留一定偏移量,即盾构机应沿设计轴线的割线方向掘进。预偏量的确定需要依据理论计算和施工经验综合分析得出。

1.7 掘进参数控制

在急曲线段施工时,应降低盾构机掘进速度,减小总推力。盾构掘进速度越快,盾构机总推力就会越大,管片所受侧向分力就越大。同时,为减小侧向分力对管片姿态的影响,可分次间隔地完成一环掘进。即每掘进一定距离,停止掘进并分批收回全部千斤顶,再让千斤顶重新顶压管片,然后继续掘进,多次循环完成一环的掘进。从而改变了千斤顶顶靴和管片接触位置,调整千斤顶推力方向,减小千斤顶推力与管片端面法线的夹角,从而减小了千斤顶侧向分力。

1.8壁后注浆控制

在急曲线段进行盾构施工,宜采取不平衡同步注浆与双液注浆相结合的方案,控制成型隧道轴线,减少管片错台和破损现象。即关闭轴线内侧壁后注浆泵,利用外侧注浆孔进行注浆,甚至二次注浆,防止管片环在侧向分力作用下向外偏移。

2结语

盾构在急曲线段施工时,最为重要的是如何处理盾构姿态、管片姿态、隧道轴线之间的关系。因此,在盾构设备和管片选型确定后,盾构施工过程中的控制方案决定了成型隧道的质量。通过系统阐述急曲线段的施工控制措施,以期更好地为指导盾构施工提供借鉴。

参考文献

[1]竺维彬,鞠世健.复合地层中的盾构施工技术[M].北京:中国科学技术出版社,2006.

[2]竺维彬,鞠世健.盾构隧道管片开裂的原因及相应对策[J].现代隧道技术,2003(1):21-25.

[3]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.

2.盾构法施工控制要点 篇二

关键词:地铁隧道;盾构法;施工质量

一、盾构技术概述

盾构法施工,就是利用有特定形状的盾构掘进机钢制构件,按照设计的隧道轴线通过挖掘土体向前掘进,完成隧道土体开挖和管片拼装,进而完成隧道开挖支护的施工技术。在刀盘开挖土体阶段,钢制构件用来维持土体稳定、保护作业人员安全施工。当使用盾构机修建地下隧道时,盾构法施工基本原理是根据隧道埋深和地质情况,在土仓建立一定的土仓压力,利用土舱压力或者泥水压力来平衡掌子面的水土压力,以此保证掌子面稳定;选取合理的掘进参数,进行隧道开挖,确保刀盘开挖土体和推进施工时掌子面稳固,力求把对岩体的扰动降到最低,尽最大可能降低对地面建构筑物和地下管线等设施的影响。盾构施工过程中,通过同步注浆和二次注浆,填充施工空隙,控制沉降,确保施工安全和质量。

随着盾构施工技术发展,盾构机的种类和开挖直径呈现多样化,如盾构有土压平衡式、泥水平衡式、双护盾、矩形盾构机等。在城市地下隧道施工中,目前主要使用土压平衡和泥水加压平衡盾构,在一些地质情况复杂的地层中,也能够很好地满足施工技术规范要求。

二、地铁隧道盾构法施工质量控制重点及措施

1、管片渗水的原因及处理措施

目前,在建和已投入运营的轨道交通隧道结构均普遍出现管片渗漏水病害。通过调查发现,渗漏水主要集中在管片的环、纵拼接缝处,手孔螺栓处,以及管片贯穿裂纹处。在建设过程中若出现下列问题,则管片会出现不规则裂缝和止水带破坏,地下水通过止水带间隙从管片拼接缝、螺栓手孔及裂纹处渗出。

1.1 管片渗水的原因分析

①管片自身质量缺陷

在管片生产过程中,设置密封垫的沟槽部位混凝土不密实有蜂窝、气泡等缺陷,管片拼装完成后,地下水绕过密封垫,从蜂窝、气泡孔处渗漏进来。

②管片止水条脱落

在拼装过程中,管片发生了碰撞,使止水条脱落或断裂,使密封垫没有形成闭合的防水密封圈。

③ 管片背衬注浆不饱满

盾构掘进中盾尾同步注浆量不足或注浆不及时,会造成管片背衬空隙填充不密实,管片与地层间隙积水,若管片密封条贴合不紧密,水压使密封垫压实较薄弱的位置出现渗漏现象。

④盾构与管片的姿态不好

盾构与管片的姿态不好,与轴线偏差大,会影响管片拼装质量,造成管片错台,止水带错位,相邻管片止水带不能正常吻合压紧,从而引起漏水。

⑤掘进过程中推力控制不当

掘进过程中姿态纠偏过快,推进油缸液压千斤顶推力差过大,易造成管片受力不均匀、局部受压过大,导致管片产生破损、裂纹、贯穿性裂缝等,以致产生渗漏水。

⑥ 管片拼装质量控制不严格

管片拼装时,盾尾积水积渣未清理干净,管片止水条区域存在破损,管片止水带错位、断裂及遇水膨胀止水条失效等,均会导致拼装出现空隙形成漏水;管片螺栓紧固不到位,管片防水圈没有压实,或过早紧固管片螺栓,都会导致管片整体出现空隙,也会造成渗水。

1.2 渗水质量缺陷预防及渗水堵漏措施

1.2.1 掘進和管片拼装过程严格把控

盾构掘进过程中,选取合理的推力等掘进参数,控制姿态与隧道轴线拟合,做好同步注浆压力和注浆量满足要求,严格把关管片生产质量和拼装过程,能够有效的防止管片拼装完成后产生渗漏水。

1.2.2 二次补浆

对存在漏水的管片首先进行二次补浆,二次补浆能够在根本上堵住渗水通道。二次补浆首先采用单液浆,注浆压力控制在一定范围内,观察堵漏效果;效果不明显后注双液浆,注浆压力可以稍微提高。

1.2.3 环纵缝注浆堵漏

当二次补浆后环纵缝仍然存在漏水时,采用注浆进行封堵。注浆措施如下:对环向缝和纵向缝全部采用快干高强度砂浆(含环氧树脂类成分)封闭,为后面灌浆做准备,封闭的时候向内凹进去1-2厘米深的弧形;再在漏水缝上垂直钻孔到止水条处,钻孔间距每米2-3个,同时装上专用注浆嘴,用高压灌浆设备向接缝内灌浆,浆料优先采用环氧树脂,灌浆压力控制在一定范围内,以压满整个接缝为准。

2、管片错台的原因及处理措施

管片错台是拼装好的管片同一环各片,或者是相邻环管片之间的内弧面不平整。人为操作控制不当和管片受力不均匀等都会产生管片错台。

2.1 错台产生的原因

管片错台产生的原因主要有以下几个方面:管片拼装手在拼装过程中未按照标准流程操作,未控制好平整度;管片点位选取不当,选择的管片型号不合理;管片拼装的中心不与盾构机轴心一致;在安装管片时,人为的偏移管片的径向,出现错台;盾尾底部积水积渣清理的不干净,造成此处的管片安装难以就位、不能插入螺栓;在管片完成安装后,未对管片螺栓进行规定的复紧工作;同步注浆时注浆量太大,注浆压力太高,也会造成错台;在掘进施工时,围岩或隧道轴线、转弯半径变化,盾构机的姿态调整不及时或控制不当,造成盾构机姿态大幅度的变化,管片的错台也会造成连锁反应,比如完工后管片的错台,由于管片上浮,也能造成错台现象。

2.2 错台防止措施

选择合理的管片类型和点位以适应设计线路,保证转弯管片的比例和管片螺栓的质量可以满足施工的要求。在工程施工的过程中,选择管片的类型要以设计参数为依据,确保管片中心与盾构机的轴心同心。施工过程中主要依据的是千斤顶形程差,和盾尾间隙等。管片安装的过程必须要以规定的施工规范为标准,严格执行。同时也要管理好注浆过程,根据实际地层的情况,选用最合理的注浆方式,并控制好注浆的压力。

3、管片破损的原因及处理措施

3.1 管片破损产生的原因

①吊运和拼装过程中的碰撞,边缘部分混凝土的脱落。②千斤顶撑靴顶在管片上不正(盾尾间隙不均匀时)会使管片内侧或外侧的混凝土破损。③盾构机姿态调整时,急于纠偏造成受力不均匀、千斤顶行程差过大而导致管片损坏。

3.2 管片破损防治措施

①在吊装、运输、安装过程中应做好防护措施,做好保护工作。②盾构机姿态调整不宜过急,适当调整千斤顶压力差和行程差。③根据隧道曲线走向、盾构姿态和盾尾间隙,选择最恰当的管片类型和拼装点位。

4、盾构法施工精度控制及纠偏

盾构机自身的导向测量系统就可以进行掘进工作中盾构机的定位、管片定位和管片安装顺序的测算工作。但导向系统自身也会出现问题,造成施工误差,所以就需要在盾构机零位测量时设置人工测量标志,便于对系统进行定期或不定期的检查,以确保系统的准确性。一旦出现盾构机操作失误或地质条件突变,造成线路偏移时,要及时纠正。

盾构机纠偏工作中要注意以下几点:在进行刀盘转向变更时,按照一定的间隔进行切换,并且不宜太快;结合掌子面地层情况对掘进参数进行调整,以免再出现偏差;蛇形修正速度不宜太快,要长距离的慢慢修正;测量转站时,确保精度;在进行直线推进时要选择新的基准即当前位置与设计线远方位置上任一点所成的线,以此为据进行线形管理。而对于曲线推进,则要求盾构机的位置点与远点之间的连线与设计曲线相切。

结束语

城市地铁隧道盾构法以其地层适应强、速度快、施工质量有保证等显著的优点被广泛地应用,是一种具备安全性和高速度的城市地铁施工方法,文章对盾构法施工技术及质量控制措施的分析,目的在于提高城市地铁盾构法施工的技术应用质量,促进城市地铁建设的快速发展。

参考文献:

[1]李鸿威.地铁工程中盾构法隧道的质量缺陷和改进办法[J].西部探矿工程,2003(12):88-86.

3.盾构接收施工技术要点有哪些? 篇三

盾构接收是指自掘进距接收工作井一定距离(通常100m左右)到盾构机落到接收工作井内接收基座上止,

当盾构正常掘进至离接收工作井一定距离’(通常50~100m)时,盾构进入到达掘进阶段。到达掘进是正常掘进的延续,是保证盾构准确贯通、安全到达的必要阶段。其施工技术要点如下。

(一)盾构暂停掘进,准确测量盾构机坐标位置与姿态,确认与隧道设计中心线的偏差值。

(二)根据测量结果制订到达掘进方案。

(三)继续掘进时,及时测量盾构机坐标位置与姿态,并依据到达掘进方案进行及时进行方向修正。

(四)掘进至接收井洞口加固段时,确认洞口土体加固效果,必要时进行补注浆加固,

(五)进入接收井洞口加固段后,逐渐降低土压(泥水压)设定值至0MPa,降低掘进速度,适时停止加泥、加泡沫(土压式盾构)、停止送泥与排泥(泥水式盾构)、停止注浆,并加强工作井周围地层变形观测,超过预定值时,必须采取有效措施后,才可继续掘进。

(六)拆除洞口围护结构前要确认洞口土体加固效果,必要时进行注浆加固,以确保拆除洞口围护结构时不发生土体坍塌、地层变形过大。

(七)盾构接收基座的制作与安装要具备足够的刚度,且安装时要对其轴线和高程进行校核,保证盾构机顺利、安全接收。

(八)拼装完最后一环管片,千斤顶不要立即回收,及时将洞口段数环管片纵向临时拉紧成整体,拧紧所有管片连接螺栓,防止盾构机与衬砌管片脱离时衬砌纵向应力释放。

4.盾构法施工控制要点 篇四

预应力砼梁(板)因其节省材料,自重轻,减小砼梁的竖向剪力和主拉应力,结构简单,安全可靠,便于安装等优点,在国内桥梁建设中得到广泛应用。但预应力施工工艺相对较复杂,要求预应力结构施工的专业性强,但在实际施工中,有的施工队伍水平不高,经验不够丰富,加之有的设计方案考虑欠妥,引发梁(板)预应力施工过程中损失过大;空心板梁张拉后梁端顶底板中间部位出现纵向裂缝;工字梁梁体扭曲变形、梁端底部砼破碎等原因。

2 后张法施工时缺陷及原因

后张法空心板梁在张拉过程中,梁端也有出现类似先张法的纵向裂缝,甚至有的在张拉时发生梁端底板砼压裂破碎的现象。

2.1 分析其原因

一是设计上对张拉时梁端砼局部应力集中考虑不周;二是张拉时,张拉顺序不当,张拉速度过快;三是梁体砼质量低劣、或张拉时间过早,以及锚垫板附近的砼不密实,导致梁端砼在张拉后出现碎裂。

2.2 采取的措施

1)梁端布筋设计应充分考虑张拉时产生的局部应力集中,增加横向分布钢筋数量和适当增加封锚端和梁端砼的几何尺寸。

2)预应力筋张拉顺序应符合设计要求,当设计未规定时,宜采取分次、逐级对称张拉;张拉时,均匀加载,不宜过快;以尽可能减小张拉过程出现局部应力集中。

3)严格梁(板)砼浇筑时的施工控制,确保梁(板)砼浇筑质量,特别要加强对锚垫板后的砼振捣。张拉前,应对梁体进行检验,是否符合质量标准要求;张拉时,砼强度应达到设计要求;设计无规定时,以不低于设计强度值的95%为宜。

2.3 工字梁张拉过程梁体侧向扭曲、梁端底部砼破碎的原因及采取的措施

1)原因

工字梁腹板厚度一般仅为18cm~30cm,马蹄宽度约为40~60cm,马蹄部位预应力筋一般上下布置2排,每排水平布置2孔;第一孔张拉时,张拉侧向施加了预应力而受压,另一侧梁体必然受拉,加之工字梁梁长、腹板厚度薄、侧向自由度大,如果张拉时采取一次张拉到位,则导致梁体侧向扭曲(有的T梁张拉过程也出现类似侧向扭曲变形)。

2)采取的措施

宜采用分次逐级对称张拉,第一次张拉时,逐孔预应力施加至50%的张拉控制应力σcon,张拉顺序第一次为左右侧对角线交叉进行,因马蹄宽度小,位置不够,只能逐孔张拉。第一孔张拉至50%的σcon后拆下千斤顶,移至第二孔张拉,以次类推;第二次张拉时按第一次张拉顺序逐孔张拉到80%σcon;第三次张拉时按前二次张拉顺序逐孔张拉到100%σcon。有的项目采取这种方法,有效的解决了工字梁侧向扭曲的问题。

2.4 I字梁(及T梁)张拉后梁端底部砼破碎的原因及采取的措施

1)原因

工字梁(及T梁)张拉后,梁体因预应力的作用产生反拱,梁端底部一方面承受因梁体反拱而产生的水平摩擦力,一方面承受梁体的全部自重,导致梁端砼在压应力作用下破碎。

2)采取的措施

有的项目在梁体预制的底模端部设置一块长约1m、厚约2~3cm的橡胶板(顶面与底模齐平),梁体张拉后,橡胶板受压变形,受压面积增大,梁端砼承受的集中压应力随之减小,梁端底部砼完整不破碎;有的项目,梁体预制时在梁端底部设置梁长方向约20 cm、竖向约10cm的导角,有效地增大了张拉后梁端底部的受压面积。

2.5 预应力损失过大的原因及采取的措施

1)原因

设计计算预应力砼受弯构件张拉控制应力σcon时,除需要根据承受外荷载的情况,估定有效预应力σy外,还需要估算相应的预应力损失σs。

即:

2)预应力管道安装质量控制不严

管道位置偏差过大,或梁体浇筑过程中管道存在漏浆现象,致使σS1过大,超过原估算值。

3)有的预制场设置过小

梁的预制数量受场地限制,梁的预制采用早强剂或提高砼配置强度,梁体浇筑后一般4至5天砼强度就能达到设计强度的75%以上,有的甚至达到90%以上,而《公路桥涵施工技术规范》对龄期也未作明确要求,结果梁体砼浇筑4-5天后即开始张拉。在此龄期内砼的收缩和徐变并未完成,随着龄期的增加所引起的预应力损失σS6过大,且会导致张拉后梁体反拱度过大;再者,水泥用量大,如施工控制不当也易造成较多的收缩裂纹。

4)砂的级配不规范

先张法施工采用砂箱法放张工艺时,如选用砂的级配不好,砂的空隙率大,张拉后砂箱的压缩引起预应力损失偏大。

5)采取的措施

a加强预应力材料检验和各工序的质量控制

严格按照有关规范组织施工,避免因预应力材料不合格或施工行为不规范而造成预应力损失过大。

b严格控制梁体砼龄期

梁体张拉前,除对梁体砼强度有要求外,对龄期也应进行控制,避免过早张拉。有的项目设计规定龄期须达到10天以上方可张拉,对避免砼收缩和徐变引起的预应力损失和梁体反拱度过大取得了明显成效。

c采用级配良好的石英砂

先张法施工采用砂箱法放张工艺时,宜采用级配良好的石英砂,预应力施加后砂箱的压缩值不应大于0.5mm,装砂量宜为砂箱长度的1/3~2/5。

3 预应力施工值得注意的其它问题

3.1 伸长量的计算

理论伸长量和实际伸长量计算时,应考虑千斤顶的预应力筋的工作长度。张拉用千斤顶,按穿索类型分为内陷式和穿心式二种,目前常用的预应力锚具大多为OVM型、HVM型、LQM型、XM型、QM型等,与其配套张拉的千斤顶YCN型、YCL型均为穿心式千斤顶。张拉过程中千斤顶的工具锚锚住预应力筋使其伸长,量测到的伸长量包括了千斤顶内的工作长度部分的伸长量;有的在计算理论伸长量时没有考虑千斤顶内工作长度的伸长量,而在实际量测的伸长量数值中,已经包括了工作长度的伸长量,导致计算的伸长量误差超过+6%;相反,若计算理论伸长量时考虑了工作长度的伸长量,而在实际量测伸长量时没有包括工作长度的伸长量,则可能导致伸长量误差超出-6%。另外,计算实际量测总伸长量时不应扣除预应力筋锚固阶段的回缩量。

3.2 张拉记录换算

有的施工人员概念不清,张拉记录将油压表读数与张拉力混为一谈。张拉过程中2σ0时的张拉力常用2倍的σ0时的油压表读数代替,且张拉控制应力σcon对应的油压表读数,没有依据千斤顶与压力表配套校正校验报告给定的相应参数,进行内插法换算。

3.3 张拉记录初应力的伸长值推算

有的张拉记录初应力采用推算的方法。笔者发现张拉施工人员对初应力的伸长值计算有四种方法。第一种为直接量测法,初应力的伸长量为凭经验感觉预应力筋刚好拉紧后到张拉至初应力σ0时量测到的预应力筋的伸长量;第二种为直接计算法,初应力σ0的伸长量为(σ0/σcon)×△L(△L为理论计算伸长量);第三种为间接计算法,张拉过程量测初应力σ0至张拉到张拉控制应力σcon的伸长量(△L/),初应力σ0的伸长量取值为[σ0/(σcon-σ0)]×△L/(mm);第四种方法为采用相邻级的伸长值,例如初应力σ0为10%σcon时,其伸长值采用由10%张拉到20%的伸长值。

第一种方法显然错误,不应采用;第二、三种方法不够规范、准确,不能完全反映张拉至初应力σ0的实际工况,不宜采用;第四种方法,比较科学、准确、合理、规范,值得推广采用。

4 总语

预应力砼梁(板)预制安装施工质量直接影响桥梁质量、营运安全和使用寿命,务必引起各从业单位及从业人员的高度重视,切实抓好每道工序,每个环节的质量控制,确保梁板预制安装工程质量。

摘要:本文通过笔者多年施工经验总结, 分析了预应力砼后张法施工产生缺陷及原因, 并提出采取相应对策措施。

5.盾构法隧道施工管片渗漏防治浅析 篇五

【关键词】管片渗漏;防治方法;盾构法

盾构隧道渗漏是指隧道管片纵环接缝之间或结构表面出现湿渍、滴水、线漏、和泥沙等现象。地铁隧道渗漏容易导致漏电、断电、信号不稳定甚至中断等一系列问题。经研究表明,在软土中隧道渗漏导致地面和隧道沉降随隧道渗透系数比的增加而增加,在完全渗漏的情况下,衬砌渗流速度为0.15L/m2d时,隧道最大沉降约达20cm,并产生沉降槽,影响隧道内轨道平整、行车安全、乘坐的舒适性以及对地面建构筑的安全。

通常采用隧道内注浆、封堵等处理措施,可以在短时间内减少或阻止漏水,但不能保证长期安全,由于水流的渗透还会重新出现渗漏现象,或是堵塞后的水从新的地方渗透,形成新的漏点。

1.管片防水结构的设计

管片防水材料使用的是高抗渗等级的混凝土,并且采用防水材料是弹性止水条,它的耐久性和防水效果都已得到证实,管片接缝按设计要求进行嵌缝,螺栓孔采用遇水膨胀橡胶垫防水。

2.管片渗透的原因

2.1地理位置因素

地质条件是隧道施工的基础,在盾构法隧道施工过程中,我们必须要特别重视工程地质水文特征。地下水普遍存在于隧道四周,他是造成隧道管片渗漏的主要原因。不同的地质条件、承压条件和补给形式均会对隧道管片渗漏产生不同的影响。在同等条件下隧道穿越砂层比穿越淤泥层更易造成管片渗漏。总体而言,地下水量越丰富、水量越大、压力越大、腐蚀性越强,就越容易形成隧道管片渗漏。所以在盾构法隧道设计施工过程中,我们要对地质水文条件仔细研究,针对性的采用防治措施,避免因工程水文地质资料掌握不全或不准确而造成设计施工的防水方案出现问题。

2.2管片设计因素

目前我国的地铁隧道通常外径约为6m,采用钢筋混凝土管片衬砌。每一个环衬砌由六块管片组成,管片采用高精度的管模制作。地铁盾构法隧道一般采用单层预制混凝土管片拼装衬砌,为圆形断面结构,防水施工主要包括:管片衬砌结构自防水、衬砌外防水涂层、衬砌接缝防水嵌缝、螺栓孔防水、渗漏处理。

控制隧道渗漏水质量的主要施工工艺:管片衬砌结构自防水、衬砌接缝防水、盾尾充填注浆。在管片的设计上我们通常是在管片间用螺栓拉紧连接成环并拉紧,管片螺栓采用遇水膨胀橡胶圈止水,但衬砌的构造不可避免地使管片间存在缝隙,应通过相邻管片间的橡胶止水带相互挤密压实,从而阻止地下水从管片外侧进入隧道内达到止水效果。密封垫是管片接缝唯一的防水设计,管片之间必须提供足够的压力,其次密封垫的材料性能要良好,能长时间保持接触面应力不松驰,这样才能减小因管片设计出现的错误而引起渗漏。管片与管片间如用螺栓连接,在拼装中螺栓密封止水圈就会被损坏或遇水膨胀而失效,又或者因螺栓没拧紧而使渗漏水在螺栓孔内聚集并溢流。

2.3盾构法施工时的失误

⑴在盾构机推进过程中,盾构姿态较差、注浆不饱满或注浆压力过大等造成管片错台、破损、开裂,从而形成渗漏。影响盾构机姿态较差的因素有很多,例如地质条件软硬不均、过急纠偏、管片选型错误、盾构导向系统错误等。盾构机如果在姿态较差的情况下推进,盾尾与管片产生了挤压,最终就会造成管片错台、破损,严重时管片开裂形成通缝。

⑵盾构机前方压力不足、管片连接螺栓未紧固到位等均会造成管片间压紧力不足,密封垫松弛形成渗漏。当管片拼装完成后,采用管片螺栓人工锚固,此时压紧力不足以使密封垫紧密,在盾构机推进时,推进油缸对盾尾附近管片提供等量于盾构机推力的作用力,管片密封垫逐渐达到密实,此时如不对管片螺栓进行二次紧固,待盾构机推进完后,压紧力消失,管片恢复至松弛状态造成压紧力不足,施工中常常被忽视。

⑶在管片拼装过程中,管片间杂物未清理、加贴石棉楔子、密封垫脱落形成较大缝隙造成渗漏。盾构机在长距离掘进后或者盾构姿态长期处于较差状态,对盾尾密封刷造成严重损害,如不及时更换,则会引起盾尾大量漏浆,浆液聚集后不但影响管片安装效率,还会造成管片、密封垫间夹杂泥沙,形成缝隙。密封垫一般与混凝土管片进行人工粘贴,如粘贴不牢固、粘贴后遇水提前膨胀都可能造成密封条在拼装中脱落,若不及时处理,则形成缝隙,也会引起渗漏。

3.渗透的预防方法

3.1加强对管片的管理

提高管片的制作精度和质量是防治渗漏问题重要工作。控制好水平拼装环,使纵缝间隙小于2mm,确保管片密实无裂缝;采用高频振动台加强振捣,确保混凝土密实,抗渗要求达到设计标准。加强管片的起吊、运输及堆放管理,堆放时应在下方垫放枕木,避免出现贯穿性的裂缝。若损坏不严重可修补,否则重新调换后继续进行工作。

3.2合理施工

盾构姿态控制实际上就是将盾构机轴线尽量保持与设计轴线重合,避免因为姿态不好而造成盾尾间隙过小引起管片错台、破损。比如地质软硬不均、过急纠偏等都可能造成盾构姿态偏差,当盾构机遇到软硬不均地层时,需要降低掘进速度,合理调节各个千斤顶的推力,有必要时还要考虑在硬岩区使用超挖刀进行超挖。正确合理的施工是保证工程正常进行的必要因素,充分利用盾构机的铰接功能,例如进入上软下硬地层时,为了防止盾构机抬头,要启动铰接油缸,保持下俯姿态;反之则要保持上仰姿态。如果盾构姿态发生偏移、偏转和俯仰,就要进行纠偏。施工时轴线的纠偏是一个过程,可能要连续几环才能得到控制,所以在出现偏离轴线趋势时,就应该及时调整千斤顶的行程差,以免过量纠偏使环缝加大而引起漏水。

3.3正確使用止水条

选用质量合格且与管片型号匹配的止水条非常关键,粘贴须平整牢靠,冬季时还需经烘箱预热处理。使用时管片的表面要平滑,不能有孔和缺边,所以角部加贴的自粘性橡胶缓冲薄片的厚度、长度应符合设计要求。还要用稀释液清洗止水条和管片,如果用遇水膨胀橡胶止水条,它吸水后产生的膨胀压力可以抵抗水的渗透压力。由于在施工期间会常遇到下雨天或者隧道底部积水,所以操作不当会使止水带和螺栓垫圈在拼装前遇水膨胀、变形,影响止水效果。如果用加厚型氯丁橡胶止水带,其通过止水带与砼面产生一定的压紧力来止水。我们应及时对止水条进行检查,如出现损坏或脱落,要修补至达到规定要求,否则重新调换。

4.渗漏后处理措施

无论是隧道的何种渗漏,一经发现必须立即处理。堵漏的原则为大漏变小漏,缝漏变孔漏,即将大面积的渗漏水缩小为小面积或集中于一点,最后堵塞漏水。采用直接堵漏法和下管堵漏法。直接堵漏法是将制好快干水泥搓成圆锥形或条形塞入管片的漏水处,用力压实。当渗漏量较大时可采用下管堵漏法,用快干水泥塞入缝槽内,将一根直径20~30mm的铝管埋在漏水处剔好的槽内,把铝管周围的沟槽或圆槽用快干水泥灌满并压实。待水泥达到一定强度后,通过压浆机向管内压入环氧树脂砂浆直至密实,待漏水点停止渗漏后将孔进行封闭。

5.结语

盾构法地铁隧道施工渗漏处理技术是一项复杂的系统工程,主要涉及到工程材料、施工操作和管理维护等因素。在整个施工和治理的过程中,我们要因地制宜、综合处理问题。通过分析渗漏的原因,采取针对性解决方案,在地铁施工实践中取得良好效果,提高了地铁隧道工程施工质量。

参考文献

[1]吴笑伟.国内外盾构技术现状与展望[J].建筑机械,2008

6.盾构法施工控制要点 篇六

关键词:盾构施工技术常见问题防治措施

0 引言

盾构法具有快速、安全、对地面建筑物影响小等诸多优点,已被越来越多地应用于城市地铁、公路、铁路等诸多施工领域。盾构推进过程中掘削参数的变化会对地层产生扰动影响,诸如地表沉降、孔隙水压力、强度和承载力等物理力学参数的变化都是不可避免的;而土体的扰动往往又引发一系列环境病害,如造成周围建筑物开裂、倒坍、地表沉降,隧道内漏水、工作面漏砂等。如何采用合理的施工技术避免或减轻环境病害的发生,是盾构法施工的难点。

1 工程概况

所街站~向兴路站区间隧道位于江东中路上,在江东中路和纬八路交叉口隧道下穿低水河(河宽40.7m,河底标高3.0m);区间地下管线埋深较浅,一般在3.0m以内,不影响盾构推进。区间隧道包括左线和右线,隧道外直径6.2m,内径直5.5m。衬砌的设计强度为C50,抗渗强度等级为S10。衬砌每环宽1.2m,由封顶块(K),领接块(B1、B2),标准块(A1、A2、A3)构成。纵、环向均采用M30弯螺栓连接。衬砌接缝间防水采用由三元乙丙橡膠制成的弹性密封垫。本工程向兴路站~所街站区间属长江低漫滩地貌,地势较为平坦,场地地层呈二元结构,上部主要以淤泥质粉质粘土为主,下部以粉土和粉细砂为主,赋存于粘性土中的地下水类型为孔隙潜水,赋存于砂层中的地下水具微承压性,属微承压水。

2 地表沉降的原因与防治措施

2.1 地表沉降的原因 地层损失包括建筑空隙及超挖或其它土层流失,具体为①盾构工作面前方上体的挤入;②盾构上方土体挤入因盾构外壳直径和拼装管片直径不同产生的建筑空隙;③盾构纠偏引起土体超挖;④盾构推进有曲率时造成土体损失;⑤盾构推进时切口环上的突缘引起超挖;⑥盾构推进引起土体孔隙水压力变化,或因降水引起地下水位下降,引起土体固结沉降。

因管片结构变形及上体的次固结和流变引起的地层变位一般分为5个阶段:①先行沉降:主要是由于地下水位变化引起的,表现为压缩、固结沉降;②开挖面前的沉降或隆起:上体应力释放或盾构开挖而的反向上压力、盾构机周围的摩擦力等作用而产生的地基塑性变形;③通过沉降:主要是对土的扰动所致,表现为压缩沉降;④盾尾空隙沉降:盾尾空隙的上体应力释放引起的弹塑性变形;⑤后续沉降:地基扰动所引起的固结和蠕变残余变形。

2.2 减小地表沉降的防治措施 在本工程直线段,根据隧道埋深、土层性质和地面超载计算主动和被动土压力值和静水压力,根据计算结果结合初推阶段的施工参数设定土压力值。根据设定的正面土压力控制出土速度和掘进速度。根据不同土层和覆土深度,配合监测信息的分析及时调整土压力值的设定。同时要求推进坡度保持相对稳定,控制一次偏量,减少对土体的扰动。再根据推进速度,出土量和地层变形信息、数据反馈及时调整初始设定的土压力值和注浆量,进而达到对轴线和地层变形在最佳状态下的控制。

当盾构机在曲线段掘进时,根据曲线的施工特点调整推力、推进速度、出土量和注浆量,并根据地层变形的信息数据及时调整各种施工参数,以期在尽量短的时间内将土压平衡值和注浆量调至曲线掘进的最佳状态。

3 隧道内漏水原因与防治

3.1 隧道内漏水原因 盾构隧道是由一片片独立的管片通过螺栓联接起来,管片接缝部位为防水的薄弱环节,隧道内漏水部位一般出现在管片接缝处。产生漏水的主要原因是:管片拼装过程中偏差、止水条老化或失效。

3.2 隧道漏水防治

3.2.1 加强管片制作、运输和拼装的管理 ①提高管片的制作精度和质量,控制水平拼装环、纵缝间隙小于2mm,确保管片密实无裂缝,抗渗要求达到设计标准。②加强管片起吊、运输及堆放管理,避免出现贯穿性裂缝。管片堆放时内弧面向上,宽度方向应上下对齐,不准倾斜。管片间放两条木垫板,垫板上下对齐,使中间隔空。③管片拼装前查看前一环管片与盾尾间隙,结合前环成果报表决定本环纠偏量和措施。④管片拼装要防止出现错缝、台阶差,可以通过加贴楔子微量调整间隙来保持环面的平整度,楔子不得超过4mm。竖曲线段推进时,应计算上下左右的超前量,分段粘贴低压石棉板,在推进过程中,使其经千斤顶压缩后成一平整楔行环面,粘贴环面的面积一般应大于整个环面的一半。纠偏楔子厚度超过设计厚度时,止水带也应加贴遇水膨胀条。封顶块两侧的止水条在拼装前涂表面润滑剂,以减少封顶块插入时的摩阻力。⑤管片如遇损坏,轻则就地修补,重则重新调换后方可继续进行。

3.2.2 加强止水条质量管理 ①隧道采用的遇水膨胀橡胶止水带是在氯丁橡胶密封条上加覆一层遇水膨胀条制成的,由于施工期间常遇到下雨或者隧道低部积水,操作不会使遇水膨胀止水带和螺栓垫圈在拼装前遇水预膨胀或变形,影响止水效果,故应在粘贴止水带的地方做好防雨措施,搭设活动防雨棚和在止水带表面涂缓膨剂。②冬季施工时应设置烘房设施,作橡胶止水带加温。③角部加贴的自粘贴橡胶薄片厚度长度应符合设计要求,以免影响止水带效果。④“F”块插入间隙偏小,摩阻力大,止水带容易延伸拉长,角部形成“疙瘩”,影响压密,所以在拼装前应涂水性润滑剂,以减少封顶块插入时摩阻力。

4 盾构穿越高层建筑或地下管线的安全技术措施

4.1 严格控制盾构的施工参数,防止超挖、欠挖,在穿越建筑物管线过程中以推进速度和出土量,为主要管理指标。当盾构脱出建筑物和管线后以注浆量为主要管理指标。严格控制盾构在穿越阶段推进时的纠偏量,减少纠偏对土体的扰动。控制施工进度,做到均衡施工避免中途搁置。采用信息化施工,及时调整施工参数;

4..2 详细阅读、熟悉掌握设计、建设单位提供的地下管线图纸资料,在工程实施前,核对弄清地下管线的确切情况,包括标高、埋深、走向、规格、容量、用途、性质、完好程度等;

4.3 施工准备阶段,对参与本工程施工的全体职工进行"保护公用事业管线重要性及损坏公用管线危害性"的宣传教育,要求职工在施工中严格遵守有关文件的规定,保护地下管线技术措施的要求落实到现场,并设置必要的管线安全标志牌悬挂“无重大管线事故标牌”和保护地下管线安全的《十个不准》;

4.4 工程实施前,办妥《地下管线监护交底卡》手续,作层层安全交底,建立“保护公用事业管线责任制”明确各级人员的责任;

4.5 对受施工影响的地下管线,设置若干数量的沉降测点,定期观测管线的沉降量,及时向建设单位和有关管线单位提供观测点布置图与沉降观测资料。对邻近的地下管线作严密的沉降观测,发现沉降量达到报警值时,即对管线下地基作跟踪注浆,防止管线过量沉降;

4.6 在施工过程中发现管线现状与交底内容、样洞资料不符或出现直接危及管线安全等异常情况,立即通知建设单位和有关管线单位到场研究,商议补救措施,在未做出统一结论前,不擅直处理或继续施工,施工过程中对可能发生意外情况的地下管线,事先制定应急措施,配备好抢修器材,以便在管线出现险兆时及时抢修。

5 结语

7.盾构法施工控制要点 篇七

导向钻进施工法是将定向钻机设在地面上,在不开挖土壤的条件下,采用探测仪导向,控制钻杆钻头方向,达到设计轴线的要求,经多次扩孔,拖拉管道回拉就位,完成管道敷设的施工方法。

1 导向钻进法施工的原理

导向钻进法的导向钻进多数使用一种射流式辅助切削钻头,钻头通常带有一个斜面,因此当钻杆不停的回转时则钻出一个直孔,而当钻头朝某个方向给进而不回转时,钻孔发生偏斜。导向钻头内带有一个探头或发生器,探头也可以固定在钻头后面,当钻孔不断向前推进时,发生器发出的信号被地表接受器所接收和追踪,因此可以监视方向和其他参数。

导向钻进的成孔方式有两种:干式和湿式。干式钻由挤压钻头、探头室和冲击锤组成,靠冲击挤压成孔,不排土。湿式钻由射流钻头和探头室组成,以高压射流切割土层,有时辅以顶驱式动力头以破碎大块卵石和硬土层。两种成孔方式均以斜面钻头来控制钻孔方向。若同时给进和回转钻杆柱,斜面失去方向性,实现保直钻进;若只给进不回转钻杆柱,作用于斜面的反力使钻头改变方向,实现造斜钻进。钻头轨迹的监视,一般由手持式地表探测器和孔底探头来实现,地表探测器接收显示位于钻头后面探头发出的信号(深度、顶角、工具面向角等参数),供操作人员掌握孔内情况,以便随时进行调整。

2 施工机具

导向钻进非开挖施工机具主要包括非开挖导向钻机、导向钻头、钻杆柱、手持式导向仪器等。

2.1 非开挖导向钻机

非开挖导向钻机有多种,较为常用的机型为ZT-25型导向钻进非开挖铺管钻机,该机采用高强度橡胶履带底盘,动力站和钻机一体化结构,移动方便,机动性强。钻机动力选用康明斯柴油机,动力充沛,性能稳定可靠。动力头采用双马达驱动,回转平稳,扭矩大。动力头设有卸扣自行浮动机构,以减少对钻杆丝扣的磨损,操作简便可靠。随机液压管线集中于防护套内,提高了管线的使用寿命。方便的角度调节油缸,入射角调节灵活。给进回拉采用马达-链条机构,推拉力相同,便于长距离控向。双夹持器拧卸钻杆,效率高。全液压驱动,集中控制,操作方便、灵活。

2.2 导向钻头

导向钻头由探头盒和造斜钻头组成,具有成孔、造斜的功能,是导向钻进的关键部件。

2.3 钻杆柱

钻杆柱主要是钻杆、回扩钻头、旋转接头的总称。回扩钻头用于扩大导向孔,回转钻头上面安装有碳化钨合金齿和喷嘴。扩张器的后部有一个旋转接头与工作管的拉头相连。

2.4 手持式导向仪

导向仪是导向钻进技术的关键配件之一,它用来随钻测量深度、顶角、工具面向角、温度等基本参数,并将这些参数值直观地提供给钻机操作者,其性能是保证铺管施工质量的重要前提。手持式导向仪主要由3部分组成:孔内探头、手持式接收机和同步显示器。测量深度是手持式探测仪的重要功能之一。为适应市场的需要,许多公司将仪器的测深能力由6m提高到10~20 m。另外,测量顶角、工具面向角的方式从原来的定点显示改为连续显示,顶角的增量改为1%,这样一来使操作者可以更加方便、准确地控制钻孔的方向。

3施工工艺

导向钻进法的施工工序:测量放线→导向孔轨迹设计→施工准备→钻机就位→钻导向孔→回拉扩孔→回拉铺设管道(拖管)。

3.1 测量放线

根据施工要求的入土点和出土点坐标放出管线中心轴线,并根据要求进行导向孔轨迹设计。

3.2 导向孔轨迹设计

导向孔轨迹设计是在管线剖面图基础上,设计出钻孔的最佳曲线。根据开挖的工作坑、接收坑结合设计井位,按照设计管道标高来设计钻进轨迹。不仅需要考虑避开穿越区域的地下管线,还要考虑到水文地质、地面环境、铺设管道的管径材质、穿越长度深度、钻机的性能等因素。管道施工的轨迹要满足设计要求,必须考虑入土点、出土点的斜直段、曲线段长度,严格控制水平穿越段各点标高。

3.3 钻机就位

钻机就位前对机施工场地进行平整(20 m×30m),保证设备通行及进出场。测量打好轴线后,根据入土点、入土角度结合现场实际情况使钻机准确就位。钻机设备、泥浆设备、固控设备安装完成后,对其进行调试,确保导向孔的精度。

3.4 钻导向孔

导向孔的钻进是整个导向钻的关键。为了确保出土位置达到设计要求,控向对穿越精度及工程成功与否至关重要,开钻前要仔细分析地质资料,确定控向方案,钻机手和导向仪操作手要重视每一个环节,认真分析各项参数,互相配合钻出符合要求的导向孔,钻导向孔要随时对照地质资料及仪表参数分析成孔情况。

3.5 回拉扩孔

导向孔完成后,然后进行回拉扩孔,首先将导向头卸下,装上一钻头,钻头孔径比孔洞大1.5倍,然后将钻头往回拖拉至初始位置,卸下该钻头,换上更大的钻头,来回数次,直到符合回拖管道要求。回拉扩孔时的钻具组合为:钻杆+扩孔器+钻杆。预扩孔的次数主要由地层地质条件、回拖管线管径大小等来决定。地层硬度越大,扩孔次数越多;管径越大,扩孔次数也越多,最后扩孔直径一般到大约管径的1.3~1.5倍为止,保证管线能安全顺利拖入孔中。

3.6 回拉铺设管道(拖管)

管道回拖是穿越的最后一步,也是最为关键的一步。管道回拖成功了,管道铺设也就基本完成了。在回拖时采用的钻具组合为:钻杆+扩孔器+回拖万向接十穿越管道。在回拖时要连续作业,避免因停工造成缩孔、塌孔,从而使回拖阻力增大,或发生“泥包钻”,如果万一回拖力太大时,应采用助推器进行助推。回拖的管道要布置在穿越中心线上,尽量避免与出土的钻杆之间形成夹角,回拖前若地形较平时沿管线挖一“发送沟”,并在发送沟中灌入水,然后将管线放入发送沟内。当管线管径小时,可直接将焊接的管线放在滚轮架上,以便回拖时减少摩擦力,保护管道。当回拖的管道管径大时,回拖前根据出土角的大小沿钻杆开挖一出土斜坡,以利于管线按出土角度回拖入孔中。

4 质量控制要点

(1)导向出入点位置和高程控制的好坏直接影响到导向钻进是否能达到设计和规范要求。

(2)在钻导向孔时,应提前完成整根管线的焊接、探伤、防腐补口、试压等工作。所用管材必须符合国家规范标准要求,否则会出现焊口拖裂。

(3)控制好钻杆钻进角度,保证高程和质量。钻进时要特别注意纠偏过度,偏向原来方向的反方向,会大大影响施工进度和加大工作量。

(4)根据出土点返浆情况调整泥浆量,保证孔内钻屑能够顺利被泥浆带到孔外。扩孔过程中产生的泥浆要及时处理。

(5)管线回拖完毕后,井内管头封堵要及时严密。

5 结束语

8.地铁盾构施工材料成本控制策略 篇八

【摘要】从地铁盾构施工物资管理的材料消耗定额、采购、验收、库存、消耗、以租代购、周转材料维护、进口配件国产化等方面入手,阐述了地铁盾构施工材料成本控制策略。

【关键词】地铁盾构;施工;材料成本;控制

目前,地铁盾构建筑市场竞争日趋激烈,工程中标价越来越低,但工程质量要求却越来越高。我集团公司也正大力推行责任成本管理,其目的就是通过加强成本控制,实现效益最大化。物资部门作为成本控制的关键部门,如何进一步加强管理,降低材料费支出已成为建筑企业内部管理的重要内容。理清物资成本管理的各个关键环节,实施监控,是控制材料成本的关键。

确定材料消耗定额

开工之初,确定材料消耗定额是控制材料成本的首要工作,是工程进行中进行材料消耗核算的依据。确定消耗定额的重点是针对工程中使用数量大和容易超耗的材料。比如盾构施工中盾尾脂的消耗量非常大,由于受多种因素的影响较难控制,那就要分不同地质条件,确定不同品牌盾尾脂的大致消耗量即消耗定额,以达到控制用量的目的。

规范采购行为

2.1 简化采购渠道

物资采购活动中,多一道环节就多一笔费用,所以每类材料都是否做到了简化采购渠道,是衡量物资采购工作做得好坏的标准。我集团公司在广州先后进行的四个盾构项目所需用的管片背后同步注浆用散装水泥,尽管用量不大而且分散,每个月用量仅二、三百吨,但只要资金情况允许,都尽量直接从生产厂家购货,从采购环节上砍掉不必要的开支。

2.2 重视性价比

盾构施工会用到其他工程领域用不到的一些材料,比如盾尾脂、润滑脂、水玻璃等材料,这类材料品牌很多,使用效果也千差万别,在采购中不可一味地追求低价格而不顾使用效果。有些国际品牌的材料,尽管价格较高,但在单位工程消耗量少,且效果好;有些材料则恰恰相反。所以追求低成本、高回报,就要选择采购性价比高的材料。

2.3 物资招标采购中需注意的问题

物资招标采购目前在各建筑企业已较为普遍,但仍有两个方面的问题容易被忽视。招标可分为公开招标和选择性招标两种,目前由于各方面的限制,建筑企业普遍采用的是选择性招标,即招标公告没有对外公开,只是自行选择个别投标单位。那就产生第一方面的问题,即邀请的投标单位是否在该行业是优秀的?所选的投标单位是否有代表性?第二个问题是通过招标最终确定的标价是否与市场价格相符,是否具有合理性?要解决这两个问题就要求招标组织单位一方面要充分了解整个行业大多数供货商的情况,以便于选择到优秀的供货商,另一方面要做到不封闭自己,结合考察全国、同城范围内同种材料的使用情况及价格,不让招标本身蒙蔽眼睛,最终体现材料招标采购的价值和意义。

2.4 完善物资购销合同管理

严格合同管理应该包括两方面的工作,一是要签好合同,合同的各项条款要公正合理,更重要的是要维护好我们企业的利益,规避风险,不因合同条款方面的失误增加我们的材料成本。其次是要切实执行合同。例如我集团公司在广州地铁五号线杨珠盾构项目的管片止水胶条招标过程中,由于考虑到签完物资购销合同后不定能马上开工,而且经过物资人员调查,管片止水胶条(橡胶材料属于石油工业的副产品)的市场价格走向由于受国际原油市场价格的影响呈上升趋势,所以在合同条款中加入了一条,即供方交需方一定数额的履约保证金,该款在供方将第一批材料送到需方工地后,需方无息返还。结果正是在我方即将开工,通知供方送第一批货时,管片止水胶条的市场价格大幅攀升,比照原合同总额上涨近三十万元,但由于供方先交了履约保证金,如果对方违约,不但是丢失信誉,而且没送货就先赔钱,所以对方还是较好的履行了合同。其实不加履约保证金条款,我们企业不见得“吃亏”,可能仅仅是赚不到“便宜”,但如果不重视合同条款的评审,恐怕就要“吃大亏”。可见严格合同管理,对控制材料成本是非常重要的。

2.5 严格执行非合同材料的采购审批

盾构施工的特点,决定了在施工中需要采购大量零星的配件、小型工具、五金材料等,由于这些材料类别太多,开工前很难做出采购计划,面对的供货商也非常多,很难进行合同管理。面对这种情况,如想控制材料成本,严格执行非合同材料的采购审批就显得尤为关键。哪些要采购?何时采购?采购多少?有何质量要求?是否指定专一品牌?大致价格是多少?这些都可以通过非合同材料的采购审批手续来实现,通过这个审批手续,主管工程师、部门主管、物资主管、分管领导直至项目经理都将明确自己的意见,中间哪怕有一个环节提出不同意见,都可能影响甚至决定整个审批意见。操作既简单又清晰、公开,但意义重大。我集团公司在广州先后进行的四个盾构项目均采用了这样的做法,对控制非合同材料的采购成本起到很大作用。

严把材料的验收关

3.1 严格控制材料的数量验收

经常听人说某个施工项目的材料亏损了,什么原因呢?单说采购环节,一种原因可能是材料价格上涨了,增大了材料成本,这叫“明亏”;但还有一种原因叫“暗亏”,即验收数量上的亏损。人们往往只盯住“明亏”不放,却忽视“暗亏”。所以,要控制好材料成本,就要严格把住材料的数量验收关。

盾构施工需要的材料,有些数量容易进行准确的验收,但有些材料就较难准确验收,比如管片背后同步注浆用粉煤灰,用量非常大,车车过磅不可能,不过磅又怕少,怎么办?这就要两方面下手,一方面打开罐车进行观察,另一方面辅以不定期抽查检验,同时还要在合同中规定抽检惩罚原则,近似于“缺一罚十”。这在一定程度上遏制了供方在数量上进行欺诈。

在材料的验收工作中不能怕麻烦,比如验收管片螺栓,没有什么好办法,想图省事可以过磅验收,但不准确,想准确那就只有打开袋子一条一条的清点。

3.2 严格控制材料的质量验收

控制材料的质量验收包括验收材料的外观质量、通过仪器或委外送检来检验材料实体是否合格。避免由于购入不合格材料,加大材料成本,给施工项目造成不必要损失。

合理确定材料库存量

材料库存量过大对材料成本的影响主要表现在两方面,一方面是材料库存量大必然要求施工现场有较大的库房,必然发生较大的建造和维护费用,而目前城市轨道交通业主为了尽量减少扰民,能提供的施工现场是越来越少。另一方面,如果施工设计发生变化,极有可能发生大量库存材料用不上的现象,发生大量库存成本不说,最后还有做为废品处理的风险。

但材料库存量过少又无法满足施工的要求,该如何是好呢?

现代企业库存控制原理在库存控制技术方面分为定量库存控制原理和定期库存控制原理,根据地铁盾构施工进度较为平稳的特点,更适宜采用定量库存控制原理。定量库存控制原理也称订购点控制,是指在库存量下降到一定订购点时按固定的订购批量进行订购的方式。可用公式简单表述如下:订购点=平均日需求量×备运时间+安全库存量。通过科学的库存控制原理,可将材料的库存成本及库存风险降到最低。

严格控制材料的消耗过程

可以说,降低盾构施工材料成本的核心就是控制材料的消耗过程。严格控制材料的消耗过程可从以下几方面入手:

5.1 制定材料使用规定和消耗核算制度

盾构施工使用的材料,可分为两大类,一类属于消耗性材料,一类属于周转材料,针对这两类材料制定不同的消耗核算、使用规定,是控制材料消耗过程的关键,同时制定配套的奖惩细则。

针对消耗性材料比如盾尾脂、同步注浆等材料必须制定非常详细的使用及核算规定,规定要非常明确的说明正常施工状态下材料怎么使用,特殊地质情况下材料按何用量使用,同时明确如何对工班的使用情况进行考核。在广州地铁五号线杨珠盾构项目的施工中,由于制定的该种措施、奖惩细则得力,有较强的可操作性,工班人员执行得非常好。尽管盾尾脂的注脂泵无法将桶内的油脂注干净,但工班人员能够手工将每桶剩余的油脂倒桶,管理人员能够及时给予肯定及奖励。正确的措施和规定起到了节约材料成本的促进作用。

针对周转材料,同样要制定相应的核算及使用规定。可倒用的小型材料及机具如控制不好浪费是惊人的。在广州地铁五号线的初期施工中,物资部针对可倒用材料、小型机具及周转材料浪费较明显的情况,分别制定了《小型材料使用及核算管理规定》、《隧道照明材料使用及核算管理规定》及相配套的奖惩细则等规定。工具损坏须以旧换新,丢失要照单赔偿,哪怕是一条几毛钱的螺栓,只要你超用了,整个施工班组要付出代价。可以说材料使用规定及奖惩细则的实施均收到了良好的效果,使一线工人养成了节约材料的良好习惯。

5.2 随时跟踪,定期核算

随时跟踪,定期核算是检验执行材料使用、核算规定做得好坏的手段。

在施工中要定期对所有相关材料进行过程中核算,发现有材料超耗的现象,要准确的分析出原因,及时进行整改。比如同步注浆用细砂在每两个月的核算中亏损了,那就要分析是哪个环节出了问题,是验收时亏了,还是搅拌站称量系统出了问题,还是搅拌站操作人员拌浆时出了问题,还是地质情况发生了变化,知道了原因,就容易做出整改,及时予以纠正。

5.3 规范领发料手续,明确责任

盾构施工材料种类繁多,五花八门,但每种材料都要做到每个工班由指定的专人签收材料出仓单,报销耗时主管工程师要会同物资人员共同计算、复核,工班主管部门的主管、物资部门主管都要签署意见后才由项目经理审批,通过多道手续控制便于发现异常问题,保证各种材料真实的用到了施工中,明确责任。合理利用外部资源,相关材料以租代购

盾构施工项目的特点之一是每台盾构机都有一整套的设备和一定数量的周转材料。有时承揽的工程项目里程较长,有的较短,遇到较长的工程项目时,与盾构机配套的相关周转材料数量往往不够,是租是购就摆在了桌面上,新购或加工倒省事,但如果接下来的工程项目里程都较短,那就造成一次性投入过大,短期内不容易回收成本且将发生保管费。所以,明智的做法是对于有短期缺口的配套周转材料能租就租,减少单个项目新增材料,以达到降低材料成本的目的。

周转材料的回收与修复

在周转材料于隧道内拆卸、运输、吊装之前,工程管理部、机电设备部、物资部等部门要提出正确的材料拆卸、运输、吊装要求,尽量避免周转材料在回收过程中的损失。

周转材料回收完毕后,还要组织人员对材料进行维修和整理,尽量恢复这类材料的使用功能,避免资源浪费,以达到节约材料成本的目的。

盾构机进口配件的国产代用化

盾构机的原有配件大多都是进口的,进货周期长,价格非常高,是同类国产产品价格的十几倍甚至几十倍。完全用国产配件替代进口配件是不可能的,然而盾构机进口配件的国产代用化是个趋势,它要求管理人员分清配件的使用部位的关键程度,充分了解国产配件与进口货的差别有多大,尽量比选优良的国产配件替代进口配件,以节约材料成本。

结束语

上一篇:写景状物优美句子下一篇:当医院护士的工作总结