钣金件成品检验标准(精选6篇)
1.钣金件成品检验标准 篇一
技术部文件
BSJS0016 REV1.0
钣金件点焊参数标准
核准:
审核:
会签:
制定:付强红
发布日期:2011/07/06 海 宁 红 狮 宝 盛 科 技 有 限 公 司 发布
技术部文件
BSJS0016 REV1.0 1.目的:
规范点焊过程参数不确定性及标准的不明确性,同时规范和明确焊接的使用,判定及检测方法, 保证公司产品的焊接质量,并加以规定,以便检查工作的顺利进行和实施
2.范围:
适用部门:技术、生产部焊接及公司其它涉及焊接的车间;
公司所生产的所有需点焊产品,但是有特殊要求的产品除外 适用客户: 公司所生产的所有需点焊产品,如 BE,WINCOR 及其他客户,但是有特殊要求的产品除外.3.引用标准: 1.BE PS-01-01_03 Welding焊接标准 2.国内点焊标准
3.国内点焊接检测方法
4.点焊参数规格及标准
电阻点焊(resistance spot welding),简称点焊。是焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。点焊是一种高速、经济的重要连接方法,适用于制造可以采用搭接、接头不要求气密、厚度小于3mm的冲压、轧制的薄板构件。当然,它也可焊接厚度达6mm或更厚的金属构件,但这时其综合技术经济指标将不如某些熔焊方法。如下为焊接参数规格及标准参考表:
1.点焊通常采用搭接接头或折边接头(图1).接头可以由两个或两个以上等厚度或不等厚度、相同材料或不相同材料的零件组成,焊点数量可为单点或多点.在电极可达性良好的条件下,接头主要尺寸设计可参见表
1、表2和表3。
图1
技术部文件
BSJS0016 REV1.0
2.焊前工件表面清理
点焊、凸焊和缝焊前,均需对焊件表面进行清理,以除掉表面脏物与氧化膜,获得小而均匀一致的接触电阻,这是避免电极粘结、喷溅、保证点焊质量和高生产率的主要前提.对于重要焊接结构和铝合金焊件等,尚需每批抽测施加一定电极压力下的两电极间总电阻R,以评定清理效果,一般情况下可由清理工艺保证。清理方法可有二类:机械法清理,主要有喷砂、刷光、抛光及磨光等;化学清理用溶液参见表5,也可查阅相关熔焊资料。
3、常用金属材料的点焊
判断金属材料点焊焊接性的主要标志:①材料的导电性和导热性,即电阻率小而热导率大的金属材料,其焊接性较差;②材料的高温塑性及塑性温度范围,即高温屈服强度大的材料(如耐热合金)、塑性温度区间较窄的材料(如铝合金),其焊接性较差;③材料对热循环的敏感性,即易生成与热循环作用有关缺陷(裂纹、淬硬组织等)的材料(如65Mn),其焊接性较差;④熔点高、线膨胀系数大、硬度高等金属材料,其焊接性一般也较差。当然,评定某一金属材料点焊焊接性时,应综合、全面地考虑以上诸因素。3.1 低碳钢的点焊(表6)
技术部文件
BSJS0016 REV1.0 3.2可淬硬钢的点焊
点焊技术要点:
(1)电极压力和焊接电流选择 在保证熔核直径条件下,焊接电流脉冲值应选择偏小,以使熔核焊透率接近设计值下限(50%~60%为宜),电极压力值应选择较大,为相同板厚低碳钢点焊时的1.5~1.7倍,或采用可予调制的焊接电流脉冲波形(即用热量递增控制以减轻或避免初期内喷溅)。
(2)双脉冲点焊工艺 这种点焊工艺为焊接电流脉冲加1个回火热处理脉冲,配合适当会得到高强度的点焊接头,撕破试验时接头呈韧性断裂,可撕出圆孔。这里应注意,两脉冲之间的间隔时间一定要保证使焊点冷却到马氏体转变点Ms温度以下。同时,回火电流脉冲幅值要适当,以避免焊接区金属加热重新超过奥氏体相变点而引起二次淬火。
双脉冲点焊焊接参数可参见表7。
3.3铝合金的点焊
铝合金分为冷作强化型3A21(LF21)、5A02(LF2)、6A06(LF6)等和热处理强化型2A12-T4(LY12CZ)、7A04-T6(LC4CS)等。焊接性均较差。焊技术要点:
(1)焊前必须按工艺文件仔细进行表面化学清洗,并规定焊前存放时间。
(2)电极一般选用CdCu合金,端面推荐用球面形并注意经常清理,电极应冷却良好。
(3)采用硬规范,焊接电流常为相同板厚低碳钢的4~5倍,因此功率强大的点焊机是焊铝的基本条件。
(4)波形选择,除板厚δ<1.2mm的冷作强化型铝合金可以用工频交流波形点焊外,板厚较大的冷作强化型铝合金及所有热处理强化型铝合金一律推荐用直流冲击波、三相低频和直流焊机点焊。
(5)焊接循环,采用缓升、缓降的焊接电流,可起到预热和缓冷作用;具有阶梯形或马鞍形压力变化曲线可提供较高的锻压力;高精确度的控制器可保证各程序的准确性,尤其是锻压力的施加时间。这样的点焊循环对防止喷溅、缩孔及裂纹等缺陷至关重要。
(6)焊接参数参见表
8、表9和表10
技术部文件
BSJS0016 REV1.0 3.4 不锈钢的点焊
按钢的组织可将不锈钢分为奥氏体型、铁素体型、奥氏体-铁素体型、马氏体型和沉淀硬化型等。其中马氏体不锈钢由于可淬硬、有磁性,其点焊焊接性与前述可淬硬钢相近,考虑到该型钢具有较大的晶粒长大倾向,焊接时间参数一般应选择小些,参见表11。
奥氏体不锈钢、奥氏体-铁素体不锈钢点焊焊接性良好,尤其是电阻率高(为低碳钢的5~6倍),热导率低(为低碳钢的1/3)以及不存在淬硬倾向和不带磁性(奥氏体-铁素体不锈钢有磁性),因此无需特殊的工艺措施,采用普通交流点焊机、简单焊接循环即可获得满意的焊接质量。点焊技术要点:
(1)可用酸洗、砂布打磨或毡轮抛光等方法进行焊前表面清理,但对用铅锌或铝锌模成形的焊件必须采用酸洗方法。(2)采用硬规范、强烈的内部和外部水冷,可显著提高生产率和焊接质量。
(3)由于高温强度大、塑性变形困难,应选用较高的电极压力,以避免产生喷溅和缩孔、裂纹等缺陷。
(4)板厚大于3mm时,常采用多脉冲焊接电流来改善电极工作状况,其脉冲较点焊等厚低碳钢时要短且稀。这种多脉冲措施亦可用后热处理。
(5)焊接参数参见表12和表13。
技术部文件
BSJS0016 REV1.0 3.5 镀层钢板的点焊
镀层钢板主要有镀锌板、镀铝板、镀铅板、镀锡板、贴塑板等。其中贴聚氯乙烯塑料面钢板焊接时,除保证必要的强度外,还应保证贴塑面不被破坏,因此必须采用单面点焊和较短的焊接时间,在大多数的情况下,焊件均设计成凸焊结构。由于低熔点镀层的存在,不仅使焊接区的电流密度降低,而且使电流场的分布不稳定;若增大焊接电流又进一步促进了电极工作端面铜与镀层金属形成固溶体及金属间化合物等合金,加快了电极粘损和镀层的破坏。同时,低熔点的镀层金属会使熔核在结晶过程中产生裂纹和气孔。因此,镀层钢板合适的点焊参数范围窄,接头强度波动大,电极修整频繁,焊接性较差。点焊技术要点:
(1)需要比普通钢板点焊更大的焊接电流和电极压力,约提高1/3以上。
(2)电极材料应选用CrZrCu合金或弥散强化铜,或镶钨复合电极,并允许采用内部和外部的强烈水冷却。同时,电极的两次修磨间的焊点数应仅为低碳钢时的1/10~1/20。
(3)在结构允许条件下改用凸焊是一行之有效的措施,再配之以缓升或直流焊接电流波形会进一步提高焊接质量。(4)点焊时应采取有效的通风措施,以防止锌、铅等元素的金属蒸汽和氧化物尘埃对人体健康的侵害。(5)焊接参数参见表14和表15。
4.点焊检测方法
4.1.破坏试验及检测:
a.剥开
b.击打在一点上
1.)如母材断开,判定为OK 2.)焊点直径小(按以下处理)
技术部文件
BSJS0016 REV1.0 P1 升高电流
P2 把电流时间延长一点
P3 把加压入下降
4.2.焊接不良的区分和造成的原因:
4.2.1.溶点焊瘤
原因排查:
4.2.2.无粘性
原因排查:
技术部文件
BSJS0016 REV1.0 4.2.3.有膨胀
4.2.4.压痕不是圆的
4.2.4.无然烧变化
技术部文件
BSJS0016 REV1.0
排查方法:
1.若是想到有点奇怪,立即叫来负责人让其检查,容易妥协就会导致大事故发生;2.首件确认以试片为准,过程中按每2小时进行试片检测一次;3.开机,换人,停机,维修机器及工艺改变必须做首件试片检测.4.3 检查及判定基准(如附表)备 注
1.如上为公司内部标准,如同客户标准相冲突,以客户标准为准。
2.钣金件成品检验标准 篇二
适用范围本标准适用于钣金机箱机柜结构件的检验验收。它是对那些在设计文件上未能详尽标列的或没有必要特别指出的基本性及常规性的技术要求进行的归纳和补充说明。
本标准应与设计文件上所标识的技术要求一起并列参照执行,对哪些超出标准规定的精度以外的条款,就由该设计者提出,质检部贯彻执行,也可在征求设计者同意基础上按本标准执行。
检验、验收场地可在承造厂或甲方指定的产品到货地,其结果应一致,且以终到地结果为最终结果。
2.引用标准企业标准 Q/DMBM307-1997: 检验抽样规则。
3.机柜
3.1 外形尺寸公差
3.2 形位公差
钣金机柜不允许有肉眼可见倾斜或局部歪、扭现象存在。
框架立柱与底座垂直度为小于1.5mm。检测时以底座上表面为基准,以立柱上端内沿面为测量点。
顶框与底座平行度为小于1mm。检测点为底座上表面及顶框下表面,且互为基准。也可通过测量六面之对角线的长度,相差不得超过2.5mm来检测。有中隔板者,顶框与底座平行度可放宽至1.5mm,中隔板与顶框或底座平行度为小于1mm。
上、下围框的对角线之差的绝对值小于1.5mm。
立柱不能有扭曲现象,各立柱与上、下围框相连的两端交接线与围框相邻平面的平行度为小于0.5mm。
3.3 支撑插箱的滑道,同一层的左、右滑道所组成的工作面相对底座上表面的平行度为1mm,且应保证插箱装入后相邻两面板之间间隙之差的绝对值不得超过0.6mm。
3.4 前、后及左、右侧门不允许有鼓胀、扭曲等现象,其平面度为小于2mm。局部100mmX100mm之内不得超过0.4mm。所有门板装入机柜后,其外表面与它所在的机柜侧面平行度不得超过1.5mm,平行缝隙各处之差的绝对值小于2mm,且与框架贴合良好。固定门板同一缝隙各处之差的绝对值≤1mm;旋转门板不能有明显下垂或上翘现象,其同一缝隙各处之差的绝对值≤1.8mm。有开启与闭合要求的门,必须转动灵活,开启角度≥90°,闭合后与门磁吸附良好,转动过程中不得有任何能引起喷涂层损坏等的干涉现象。侧门装拆应灵活。旋转门板在装入并开启30°左右位置,测量远离转轴的一边到框架前平面的垂直距离,其最大值与最小值之差应≤10mm。
4.机箱及插框
4.1 箱体底面及其他侧面平面度为1mm。
4.2 箱体前后或左右立面相对底面地垂直度为1mm。
4.3 面板的顶面和底面平行度为0.5mm,侧面和底面垂直度为0.5mm。
4.4 面板装入箱体后,应垂直端正,其侧面与箱体底面垂直度为0.5mm,底面和箱体底面的平行度为0.5mm。
4.5 安装电路板或机箱的插框,需用工装模拟电路板或机箱进行装配,工装装入、拔出插箱时应顺畅,装入插箱后,应妥贴稳固,无漂浮、松动现象。硬连接的接插件应对位准确,插入、拔出无异常阻滞。
5.零部件
5.1 材质应符合图样要求,薄钢板除特别指定外,一律采用优质20#冷轧钢板,不允许使用热轧钢板,材料代用必须取得技术人员同意。
5.2 未注折弯角角度公差为±1°。
5.3 未注形状和位置公差的零件,直线度、平面度按GB1184-80所规定的C级精度检验(包括所有轮廓线及平面)。
5.4 加工过程中引起的变形,成形后应调校平直。
5.5 零件按图纸正确加工。所有棱边、棱角均应倒钝,毛刺、飞边的高度不得超过0.2mm,原则上以不划手为准则。
5.6 压(涨)铆螺母及螺钉须压(涨)铆牢固,按要求的螺钉螺母紧固力矩标准检验,不能有松脱现象。零件在喷涂过程中应保护螺纹,对于镀涂过程中引起的堵塞,应重新攻丝整复。螺纹孔应无滑丝、断扣现象,螺钉应能顺利旋入且松紧适度。
5.7 紧固件实物应符合选用的标准或图样。螺钉、螺栓、螺母、平垫、弹垫表面处理应与图纸要求相符。螺钉、螺栓应无滑丝、断扣现象,应能顺利旋入螺孔且松紧适度。
5.8 门锁开关灵活,把柄与锁体不能有碰伤现象。
5.9 所有导电件一律采用GB5585-85规定的铜母排系列或纯铜板制成,表面镀涂按图纸要求制作。需折弯的,折弯前应作退火处理,且折弯圆角半径应大于板料厚度,以免损伤内部组织及开裂。紧固连接部位的接触表面要求校平。
5.10 绝缘件按图纸选用的绝缘材料,环氧板或环氧棒应作浸绝缘漆,烘干处理。装配后的机柜正负级铜排对机架的电阻绝缘值≥100 MΩ(在环境温度为25℃±2 ℃,相对湿度为90%,电压为直流500V时)。
5.11 零件有喷涂保护要求的地方不能有油漆或粉末覆盖,保证零件间的接地连续性,其接触电阻小于0.1欧姆(电流25-30A)。
6.焊接
6.1 焊接应牢固可靠,零部件外表面焊料应到位填满,不留缝隙。
6.2 焊缝应整齐均匀,不允许有裂缝、咬边、豁口、烧穿等缺陷。夹渣、气孔、焊瘤、凹坑等缺陷、外表面应没有,内表面应不明显。
6.3 焊接操作中不允许焊渣、电弧损伤零部件其他非焊接部位,特别是外部可见处。焊后的焊渣应被清除,包括清除焊料飞溅粘附在零部件表面上的各种颗粒。
6.4 零部件表面焊后应磨平、打磨,表面粗糙度数值为12.5。对于一些焊接表面在同一平面内的,表面在处理后不应有肉眼可见的凸起和凹陷。
6.5 焊接操作应制订工艺,尽量消除焊接应力。焊接时要有工装,不允许零部件因焊接而产生各种变形,必要时焊后应对工件进行校正。
7.装配
7.1 按图纸要求装配,不允许有漏装、错装或位置不正确的现象。
7.2 所有紧固件连接可靠,符合相关的扭力要求。不允许出现松动、滑丝等不良现象。
7.3 机柜机箱正面可视及需要拆卸下来装器件的螺钉头不允许损伤。
7.4 所有成品应无灰尘、油污、手印,机械杂质及其余无关的紧固件等。
3.外协件涂装要求及检验标准 篇三
1.0适应范围
本公司生产的架桥机、起重机、挂车、平板车等外协加工部件,如平衡臂、盖板、线盒等需涂装底漆以达到防锈目的的各部件。
2.0涂装前处理的要求
2.1钢材表面应除去油污、杂物和水份(高于露点3℃以上)。2.2 焊缝周围无熔渣、飞溅物;无焊疤、毛剌等异物。
2.3 除锈后,在湿度低于85%以下时要求4小时内涂装,不允许出现返锈后,不加任何处理而进行涂装作业。2.4表面处理后需达到的标准 2.4.1抛(喷)丸处理
2.4.1.1钢材表面经抛(喷)丸处理后,应达到ISO8501-1:1988标准中的Sa2.5级,其文字描述:在不放大的情况下进行观察,表面应无可见油脂和污物,并且没有氧化皮、铁锈、油漆涂层和异物。任何残留的痕迹应仅是点状或条纹状的轻微色斑。
2.4.1.2钢材表面经抛(喷)丸处理后,表面粗糙度应达到ISO8503《钢材表面粗糙度特征》的中级,范围在40-70um较为合适,并吹净滞留在表面的丸粒、灰尘、杂物等。2.4.2 打磨处理
打磨至ISO8501-1:1988标准的St3级,其文字描述为:在不放大的情况下进行观察,表面应无可见的油脂和污物,并且几乎没有附着不牢的氧化皮、铁锈、油漆涂层和异物,表面应具有金属底材的光泽。用排扫或吸尘器清除表面垃圾和灰尘,并对表面的油渍,应用带有溶剂的抹擦除去。
3.0涂装要求
3.1 涂料:环氧富锌底漆(双组分涂料),干膜后锌粉含量大于50%。
3.2外观:喷涂后的漆膜表面应光滑平整,均匀,无流挂、皱皮、针孔等弊病;表面无明显的油污、灰尘。
3.3膜厚:干膜厚度控制在20-30um。
3.4 涂覆方式:空气喷涂,刷涂,辊涂等。
4.0涂装检验标准
4.1涂装的漆膜厚度20-30um。(凹槽处不做膜厚管控)
4.2油漆表面必须达到漆膜均匀、无露底、无针孔、无皱纹、无漏涂、无裂缝,表面无严重流挂等,无错喷、漏喷、过喷现象,表面无明显油污、灰尘。4.3 附着力检验根据GB9286-98划格法检查,0级、1级为合格。
5.0引用标准
4.UG钣金件实例教程 篇四
图1-1 UG钣金范例的最终效果步骤1 新建文件(1)在桌面上双击NX6.0图标,启动SIEMENS NX 6.0,
UG钣金件实例教程
。(2)选择模型文件,然后确定。步骤2 钣金设置(1)选择【首选项】|【钣金】菜单命令,打开【钣金首选项】对话框,默认的【部件材料】是“steel(钢)”,用户可以选择其他的材料,如铝、镁等,如图1-2所示。图1-2 【钣金首选项】对话框(2)单击按钮,选择需要全局统一的参数,并进行合理的设置,单击【确定】按钮。如图1-3所示。图1-3 【全局参数】对话框步骤3 创建钣金基本体(1)选择【插入】│【草图】菜单命令或单击【特征】工具条中的【草图】按钮,打开【创建草图】对话框。在【草图平面】选项组中选择【创建平面】选项,单击【完整平面工具】按钮,打开【平面】对话框,选择【类型】为【XC-YC平面】,单击【确定】按钮。单击【确定】按钮。(2)创建如图1-4的草图。单击按钮 ,退出草图界面,返回到主窗口。图1-4 创建的草图(3)选择【插入】│【特征设计】│【拉伸】菜单命令或单击【特征】工具条中的【拉伸】按钮,打开【拉伸】对话框。选择上一步创建的草图曲线 ,拉伸方向为Z正轴,开始距离为0,终止距离为1,其它按默认设置,单击【确定】按钮。创建的特征如图1-5所示。图1-5 创建拉伸体步骤4 打开钣金操作菜单栏(1)打开【钣金特征】工具条。如图1-6所示。图1-6 【钣金特征】工具条步骤5 创建弯边特征(1)在【钣金特征】工具条中,单击【弯边】按钮,打开【弯边】对话框。单击如图1-7所示的边缘,如图1-8所示设置参数,单击【应用】按钮。效果如图1-9所示图1-7 选择的边缘图1-8 【弯边】对话框图1-9 创建的弯边特征(2)对应的边也进行相同的操作。(3)单击如图1-10所示的边缘,如图1-11所示设置参数,单击【应用】按钮。效果如图1-12所示图1-10 选择的边缘图1-11 【弯边】对话框图1-12 创建的弯边特征(4)在【钣金特征】工具条中,单击【成型/展开】按钮,打开【成型/展开】对话框,如图1-13所示。单击按钮,效果如图1-14所示。如图选择“SM弯边(6)”,再单击按钮,效果如图1-15所示。如果单击按钮,则效果如图1-16所示。图1-13 【成形/展开】对话框图1-14 全部展开效果图1-15 成形选择的特征效果图1-16 全部成形效果步骤6 创建钣金除料特征(1)在【钣金特征】工具条中,单击【成型/展开】按钮,打开【成型/展开】对话框。单击按钮。单击【特征】工具条中的【草图】按钮,打开【创建草图】对话框。选择如图1-17所示的面为草图平面,进入草图模式。图1-17 选择的面(2)绘制如图1-8所示的草图曲线,单击按钮,返回到主窗口。图1-18创建的草图(3)在【钣金特征】工具条中,单击【钣金除料】按钮,打开【钣金除料】对话框,如图1-19所示。如图1-20所示选择放置面,如图1-21所示选择轮廓,注意舍弃区域方向是向外的,单击【舍弃区域相反】按钮,类型选择【冲孔】,单击【确定】按钮,效果如图1-22所示。图1-19 【钣金除料】对话框图1-20 选择的放置面图1-21 选择的轮廓图1-22 除料后的效果(4)继续进行【钣金除料】操作,分别如图1-20所示选择放置面,再分别相连的曲线,注意舍弃区域方向,单击【确定】按钮,效果如图1-23所示。图1-23 除料后的效果(5)在【成型/展开】对话框中,单击按钮。效果如图1-24所示。图1-24 全部成形后的效果步骤7 创建内嵌弯边(1)在【钣金特征】工具条中,单击【内嵌弯边】按钮,打开【内嵌弯边】对话框。单击如图1-25所示的边缘,如图1-26所示设置参数。图1-25 选择的边缘图1-26 【内嵌弯边】对话框(2)单击【选项】按钮,打开【选项】对话框,选择【止裂口选项】,如图1-27所示设置参数,单击【确定】按钮。单击【确定】按钮,效果如图1-28所示。图1-27 【选项】对话框图1-28 创建的内嵌弯边特征(3)在【钣金特征】工具条中,单击【内嵌弯边】按钮,打开【内嵌弯边】对话框。单击如图1-29所示的边缘,如图1-30所示设置参数。图1-29 选择的边缘图1-30 【内嵌弯边】对话框(4)单击【选项】按钮,打开【选项】对话框,选择【止裂口选项】,如图1-31所示设置参数,单击【确定】按钮。单击【确定】按钮,效果如图1-32所示。图1-31 【选项】对话框图1-32 创建的内嵌弯边特征(5)选择【插入】│【关联复制】│【镜向特征】菜单命令或单击【特征操作】工具条中的【镜向特征】按钮,打开【镜向特征】对话框,如图1-33所示。选择前面创建的2个内嵌弯边特征,镜向平面选择基准平面XZ平面,单击【确定】按钮,效果如图1-34所示。图1-33 【镜像特征】对话框图1-34 创建的镜像特征步骤8创建钣金冲压特征(1)选择【插入】│【曲线】│【椭圆】菜单命令,打开【点】对话框,如图1-35所示。输入点坐标为(0,0,1),单击【确定】按钮。图1-35 【点】对话框(2)打开【椭圆】对话框,如图1-36所示设置参数,单击【确定】按钮,创建的椭圆如图1-37所示。图1-36 【椭圆】对话框图1-37 创建的椭圆(3)在【钣金特征】工具条中,单击【钣金冲压】按钮,打开【钣金冲压】对话框。如图1-38选择冲模安放面,放置面轮廓选择上步创建的椭圆,如图1-39所示输入其他参数,单击【确定】按钮。效果如图1-40所示。图1-38 选择的安放面图1-39 【钣金冲压】对话框图1-40 创建的钣金冲压特征步骤9 创建折弯特征(1)单击【特征】工具条中的【拉伸】按钮,打开【拉伸】对话框,如图1-41所示。在选择条中选择【区域边界曲线】,如图1-42所示。选择如图1-43所示的面,拉伸方向为默认,开始距离为0,终止距离为20,布尔选择【求和】,其它按默认设置,单击【确定】按钮。创建的特征如图1-44所示。图1-41 【拉伸】对话框图1-42 选择条图1-43 选择面图1-44 拉伸后的效果(2)单击【特征】工具条中的【草图】按钮,打开【创建草图】对话框。选择钣金件的上表面为草图平面,创建如图1-45所示的草图。图1-45 创建草图(3)在【钣金特征】工具条中,单击【折弯】按钮,打开【折弯】对话框,如图1-46所示。如图1-47所示选择折弯基本面,选择上步创建的草图曲线为折弯应用曲线,折弯方向和静止方向如图1-48所示,单击【确定】按钮。效果如图1-49所示。图1-46 【折弯】对话框图1-47 选择的基本面图1-48 折弯和静止方向图1-49 折弯后的效果(4)在【钣金特征】工具条中,单击【成型/展开】按钮,打开【成型/展开】对话框。如图1-50所示选择“SM折弯(49)”,再单击按钮,如图1-51所示。图1-50 【成形/展开】对话框图1-51 成形选择的特征后的效果
5.钣金件成品检验标准 篇五
钣金件是构成航空航天等产品外形、结构和内装的主要零件。以飞机产品为例,三代机与二代机对比,钣金件总
零件减少,但其数量比例并未减少,约占飞机零件数量的50%。在航空航天产品研制中,大型整体壁板、曲线弯
边框肋零件、导弹加强框等复杂钣金件精密成形是关键性技术之一。基于数字化技术发展精密成形是世界各国在
钣金成形技术发展趋势方面一致的认识。本课题首先描述了钣金零件制造技术的发展需求和数字化制造技术基础,分析了钣金数字化制造技术的核心,最后介绍了典型应用实例。
航空航天产品对钣金件制造技术的要求
随着航空航天产品的发展,对钣金零件的表面质量、形状精度、成形过程稳定性、成形后性能、产品合格率
等的要求日益提高。新型飞机气动外形要求更严、寿命要求长,钣金件不许敲击成形,对钣金件的要求不只是贴
合,而且要有稳定的质量和性能状态,飞机机翼外形相对理论外形的偏差一般要小于0.5,不平滑度小于
0.05~0.15,钣金件弯边高度的精度要求是H+0.2-0.1。而靠样板等模拟量协调制造的工装外形误差往往达 0.2~0.3mm,局部甚至高达0.5mm,要提升钣金成形技术水平,钣金件制造的数字化是必然选择。
与其他加工制造方法相比,钣金制造数字化有着更为复杂的技术难题。首先,钣金件外形复杂、薄板料,制
造过程包括下料、成形等多个工序,其数字化定义不仅包括零件本身的定义,更包括工序件的定义和优化。为达
到精密成形,如何在考虑塑性变形特点、成形回弹等因素的基础上进行毛坯定义、成形工艺数模定义,如何解决
钣金件制造中模具型面的传递与控制等问题变得十分复杂。其次,钣金件成形是塑性变形过程,由于物理上的非
线性所带来的不唯一性、不可逆性等引起的工艺上的不确定性,在影响钣金成形质量和生产效率的诸多因素中,能够完全定量把握的并不多。第三,钣金成形过程是一次性的,在较短时间内完成成形过程。成形过程中需控制 的主要是成形力、温度等工艺过程参数,而非坐标等几何参数,控制难度更大。由于材料性能的不稳定性和随机
性,使工艺参数设计和成形过程精确控制十分困难。因此,需从成形工艺设计、制造模型定义、模具型面控制与
设计、工艺过程模拟与综合优化等方面展开研究,形成实现复杂钣金件精密成形的数字化制造整体解决方案。
钣金数字化制造技术基础
钣金件数字化制造是在考虑塑性变形特点、成形质量要求等因素基础上,以数字化技术为手段,通过合理的
制造模型数字化定义、模具数字化设计制造、优化的加工工艺参数及成形过程精确控制,使零件成形后不需要加
工或仅需少量加工就可满足质量要求,其过程见图1。
钣金件数字化制造技术基础包括以下方面。
(1)钣金件工艺数字化设计技术:以钣金件制造模型信息为依据,完成制造指令设计、工艺参数计算,生成
钣金车间加工零件的生产性工艺文件。通过对钣金材料性能数据、典型流程、工艺参数等工艺知识进行积累,把
大量经验和试验数据转化为企业内共享知识,通过知识重用技术在钣金制造过程中从知识库中提取合适知识用于
钣金成形工艺设计,提高钣金工艺设计效率和成形质量。
(2)钣金件制造模型定义技术:钣金零件从毛坯到成品零件的成形过程由多个工序组成,下料工序的毛坯和
排样模型、成形工序的工件模型和回弹修正模型等共同构成了制造模型。制造模型的精确定义是进行成形工艺过
程和模具设计的基本依据,控制着零件精密成形过程。对钣金零件,需考虑零件材料、变形特性等因素,建立毛
坯和工艺模型的专用计算工具,为工装设计、工艺参数设计、数控编程等提供数据源,以满足零件精密成形的需 要。
(3)钣金件成形模具设计与制造技术:钣金零件刚度小,橡皮囊液压成形、蒙皮拉形、型材拉弯、导管弯曲、冲压成形等成形工艺,必须用体现零件尺寸和形状的成形模具来制造,以保证其形状和尺寸的准确度。难点在
于为了避免成形缺陷(回弹、起皱、破裂等),实现精密成形,模具形状与最终零件形状并不相同。以制造模型
为依据,运用数值模拟等技术手段建立模具型面和尺寸修正的综合优化技术,保证精密成形。
(4)钣金件成形数控编程与设备控制技术:钣金数控成形设备已得到广泛应用,一些重点钣金成形设备均采
用了数控化,如数控下料铣、数控拉形机、数控弯管机、数控拉弯机、数控喷丸机等。钣金成形设备的数控化使
生产效率、精度和产品适应性较手工成形大为提高。对蒙皮拉形、喷丸成形、数控拉弯等设备,需要控制的主要
是成形力、时间等工艺过程参数,传统上采用经过多次试验的“录返式”方法得到控制程序,无法适应提高加工
效率和质量的要求。通过解析各类设备控制程序文件的格式,开发根据工艺参数自动生成数控指令的工具,实现
数控编程的自动化和设备的精确控制。
钣金件数字化制造技术核心
钣金件数字化制造过程中,各种信息均以数字形式表达和存储,通过网络在钣金制造的工艺、生产等各业务
部门内传递和交换。从以传统的模拟量为载体向以数字量为载体的制造模式的变革,核心在于2个方面:一方面是
面向工艺链数字化定义制造模型,作为工艺、工装设计和数控代码生成的依据;另一方面是对工艺知识进行建库
和使用,作为信息定义的支撑,从而建立以数字量定义、传递与控制为主的技术体系。
1基于制造模型的数字量传递与控制
在钣金件设计模型向最终零件的移形过程中,由于成形过程中材料性能的影响以及回弹等因素,成形钣金件 的模具形状与设计的零件最终形状存在一定偏差,而不是设计模型的简单传递。制造模型与设计模型是同一对象 的2个不同部分,适用于2个不同阶段。在基于模拟量传递为主的钣金件制造模式中,钣金件制造工艺过程各环节 的几何形状没有严密的数字定义,零件制造准确度难以提高。钣金件设计模型准确描述了最终形状和尺寸,但未
考虑钣金件工艺过程的中间状态,无法解决设计信息向制造延拓的矛盾。确定工序顺序和内容后,制造模型是考
虑工艺因素,把传统制造模式中以模拟量作为载体的零件形状和尺寸信息采用如图2所示,基于制造模型的数字量传递与控制是通过面向工艺过程定义工件模型和工艺模型——移形到工艺装备——生
成数控程序——以数字量传递至数控设备这样一个并行数字化制造过程,其实质在于毛坯组合排样模型、成形工
艺模型等下料、成形、检验各控形节点中的CAD几何模型直接用于成形模具设计、检验工装设计、制造指令设计、工艺参数设计、数控加工等环节;基于工装的数字化模型,能在样板制造、模具制造中始终保持给定的公差;
考虑如图2所示,基于制造模型的数字量传递与控制是通过面向工艺过程定义工件模型和工艺模型——移形到工艺
装备——生成数控程序——以数字量传递至数控设备这样一个并行数字化制造过程,其实质在于毛坯组合排样模
型、成形工艺模型等下料、成形、检验各控形节点中的CAD几何模型直接用于成形模具设计、检验工装设计、制
造指令设计、工艺参数设计、数控加工等环节;基于工装的数字化模型,能在样板制造、模具制造中始终保持给
定的公差;考虑回弹等因素直接修正后进行模具设计;这就消除了从检验标准装备到工作装备再到零件的模拟量
传递的若干中间环节引起的误差,减少了人为不确定因素的影响,改变了反复试错的制造方式,从而实现精密、快速和低成本的制造。
2基于工艺知识的钣金件工艺过程设计
钣金件及其成形工艺的种类繁多、成形过程的多因素性决定了钣金件制造依赖于在长期实践中积累的经验知
识,钣金件工艺过程设计是知识需求密集的过程。在钣金数字化制造中,除了使用CAx系统辅助设计工作之外,同时还需要钣金制造知识的支持。对已有知识的重用包括知识建库和知识使用2个基本的过程。如图3所示,基于知识的钣金制造要素定义是对钣金制造领域知识进行建库存储,在钣金件数字化制造过程中,应用系统
根据钣金零件信息从知识库中检索已有知识而使知识重现,形成问题的解,同时创建的新知识不断更新到知识库 中。
在对企业钣金工艺设计大量调研的基础上,对钣金工艺知识进行分类形成型谱图,对基本类型知识进一步分
解为信息后建立钣金工艺知识库框架;对知识采集和入库,首先定义钣金工艺领域术语,在此基础上创建制造指
令知识、各种成形工艺参数设计知识、成形模具设计知识等内容。采用基Web的架构对知识进行管理,分布式环
境便于工艺人员查阅、选用、修正和不断积累。
典型应用案例
1框肋零件橡皮囊液压成形
框肋零件是飞机机体骨架中的组件,担负着确定飞机外形和承受气动载荷的双重任务。框肋零件的结构要素
包括腹板、弯边、加强窝、加强槽、减轻孔、下陷等。弯边按几何形状分为直线弯边、凸曲线弯边、凹曲线弯边,有气动外形要求的零件弯边有较严格的精度要求。
采用基于制造模型的数字量传递方法,橡皮囊液压成形模具外形的设计(见图4)依赖于制造模型中的成形工
艺模型而不是直接依赖零件原始数模。成形工艺模型考虑了零件的回弹等因素,给出修正方案及修正参考值,对
型面和尺寸进行了合理的预修正。通过对框肋零件回弹修正设计知识的整理和存储,建立框肋零件回弹修正模型
设计知识库,支持框肋零件回弹量的预测。以制造模型为框肋零件橡皮囊液压成形工艺过程的数据源,改变了反
复试错的制造方式,简化了模具设计的工作,减少了人为不确定因素的影响,提高了模具设计的效率,同时可保
证零件成形后的精度,提高零件制造的质量,实现零件的精密、快速和低成本的制造。
2型材拉弯成形
航空航天产品结构中型材零件有框、肋梁的缘条和长桁零件等,是构成产品骨架的主要结构件。以导弹加强
框为例,该类零件是导弹横向承力元件,除了维持弹身外形,其主要的功用是承受弹身的横向集中载荷,由于导 弹产品对零件强度的要求使得零件壁厚、材料硬度大,难于成形。通过发展拉弯过程精确成形与智能控制技术,建立数字化拉弯系统,如图5所示。
根据拉弯毛料的材料特性、几何形状、模具外形尺寸、机床工作参数、加载方式、摩擦润滑情况,结合塑性
力学与工艺参数设计知识库,计算拉弯工艺参数,根据计算参数自动生成数控加工程序,用以控制数控拉弯机成
形过程,该技术已将回弹角控制精度由1.2°提高至0.2°,实现型材零件精密成形。
结束语
数字化是现代制造技术发展的核心。航空航天产品钣金件种类繁多、结构复杂,既具有共同的生产特性,又
具有各自的工艺特点,制造模型和工艺知识是钣金件数字化制造的核心所在。由于钣金工艺的特点其实现数字化 的难点,钣金精密制造技术发展需要从基础研究、应用研究、成果工程化这样一个过程紧密衔接,经过长时间的
自主研究和工程化过程,绝非引入几套设备、软件就可以形成实现精密成形的钣金件数字化制造技术能力。近年 来,国内在国防基础科研、民机专项等项目支持下,结合型号产品的研制,已突破了多项关键技术,为我国全面
掌握精密成形技术奠定了基础。
6.钣金件成品检验标准 篇六
钣金,有时也作扳金,这个词来源于英文plate metal,一般是将一些金属薄板通过手工或模具冲压使其产生塑性变形,形成所希望的形状和尺寸,并可进一步通过焊接或少量的机械加工形成更复杂的零件,钣金至今为止尚未有一个比较完整的定义,根据国外某专业期刊上的一则定义可以将其定义为:钣金是针对金属薄板(通常在6mm以下)一种综合冷加工工艺,包括剪、冲/切/复合、折、焊接、铆接、拼接、成型(如汽车车身)等。其显著的特征就是同一零件厚度一致。
常用钣金材料 一.镀锌钢材
镀锌钢材主要是两类:电镀锌板(EG/SECC)与热浸镀锌板(GI)— 其差别以后讨论。二.不锈钢
1、铁素体型不锈钢:其含Cr量高,具有良好而 性及高温抗氧化性能。
2、奥氏体不锈钢:典型牌号如/Cr18Ni9,/Cr18Ni9T1无磁性,耐蚀性能良好,温强度及高温抗氧化性能好,塑性好,冲击韧性好,且无缺口效应,焊接性优良,因而广泛使用。这种钢一般强度不高,屈服强度低,且不能通过热处理强化,但冷压,加工后,可使抗拉强度高,且改善其弹性,但其在高温下冷拉获得的强度易化。不宜用于承受高载荷。
3、马氏体不锈钢:
典型如2Cr13,GX-8,具磁性,消震性优良,导热性好,具高强度和屈服极限,热处理强化后具良好综合机械性能。加含碳量多,焊后需回为处理以消除应力、高温冷却易形成8氏体,因此锻后要缓冷,并应立即进行回火。主要用于承载部件。
三.马口铁
马口铁(SPTE)为低碳钢电镀锡(Sn)钢材;有人认为由于当时制造罐头用的镀锡薄板是从广东省澳门(英文名Macao可读若马口)进口的,所以叫“马口铁”。也有其他说法,如中国过去用这种镀锡薄板制造煤油灯的灯头,形如马口,所以叫“马口铁”。“马口铁”这个名称不确切,因此,1973年中国镀锡薄板会议时已正名为镀锡薄板,正式文件不再使用“马口铁”这个名称。
特点:保持了低碳钢较好的塑性,及成形性;一般料厚不超过0.6mm。用途:遮蔽磁干扰的遮片及冲制少零件; 四.弹簧钢
中碳钢含锰(Mn)、铬(Cr)、硅(Si)等合金钢;
特性:材料可以产生很大弹性变形,利用弹性变形来吸收冲击或减震,亦可储存能量使机件完成动作。
五.铜及铜合金
特点:导电、导热、耐蚀性好,光泽度好,塑性加工容易,易于电镀、涂装。1.紫铜(含Cu 99.5%以上)材料强度低,塑性好;极好导电性,导热性,耐蚀性;用于电线、电缆、导电设备上。2.黄铜
铜锌合金,机械性能同含锌量有关;一般锌量不超过50%。
特点:延展性,冲压性好,运用于电镀,对海水及大气腐蚀有好的抗力。但本体容易发生局部腐蚀。
3.青铜
铜锡合金为主的一类铜基合金金属统称。
特点:比纯铜及黄铜有更好的耐磨性:加工性好,耐腐蚀。4.铍铜
含铍(Be)的铜合金;
特点:高的强度、硬度、弹性、耐磨性;高的导电性、导热性、耐寒性;无铁磁性。用途:电磁屏蔽材料较多;
99012064.doc 此外,铝合金也会使用。
镀锌板是指表面镀有一层锌的钢板。
镀锌是一种经常采用的经济而有效的防腐方法。全世界锌产量的一半左右均用于此种工艺
1.定义
镀锌钢板是为防止钢板表面遭受腐蚀,延长其使用寿命,在钢板表面涂以一层金属锌,这种涂锌的薄钢板称为镀锌板。
2.分类和用途
按生产及加工方法可分为以下几类:
①热浸镀锌钢板。将薄钢板浸入熔解的锌槽中,使其表面粘附一层锌的薄钢板。目前主要采用连续镀锌工艺生产,即把成卷的钢板连续浸在熔解有锌的镀槽中制成镀锌钢板;
②合金化镀锌钢板。这种钢板也是用热浸法制造,但在出槽后,立即把它加热到500℃左右,使其生成锌和铁的合金被膜。这种镀锌板具有良好的涂料的密着性和焊接性;
③电镀锌钢板。用电镀法制造这种镀锌钢板具有良好的加工性。但镀层较薄,耐腐蚀性不如热浸法镀锌板;
④单面镀和双面差镀锌钢板。单面镀锌钢板,即只在一面镀锌的产品。在焊接、涂装、防锈处理、加工等方面,具有比双面镀锌板更好的适应性。为克服单面未涂锌的缺点,又有一种在另面涂以薄层锌的镀锌板,即双面差镀锌板;
⑤合金、复合镀锌钢板。它是用锌和其他金属如铅、锌制成合金乃至复合镀成的钢板。这种钢板既具有卓越的防锈性能,又有良好的涂装性能。
除上述五种外,还有彩色镀锌钢板、印花涂装镀锌钢板、聚氯乙烯叠层镀锌钢板等。但目前最常用的仍为热浸镀锌板。
3.外观
表面状态:镀锌板由于涂镀工艺中处理方式不同,表面状态也不同,如普通锌花、细锌花、平整锌花、无锌花以及磷化处理的表面等。德国标准还规定有表面级别。
镀锌板应具有良好的外观,不得有对产品使用有害的缺陷,如无镀、孔洞、破裂以及浮渣、超过镀厚、擦伤、铬酸污垢、白锈等。国外标准对具体外观缺陷规定都不十分明确。订货时对一些具体缺陷应在合同上列明。
SECC-Electrolytic zinc-coated steel sheet(原板SPCC)SECD(原板SPCD)、SECE(原板SPCE)锌层代号:E8、E16、E24、E32 符号:S-钢(Steel)、E-电镀(Electrodeposition)、C-冷轧(Cold)、第四位C-普通级(common)、D-冲压级(Draw)、E-深冲级(Elongation)。
锌层代号:E-电镀锌层,8、16、24、32表示锌附着量,单位为g/m2,镀层厚度(单面)1.4μ、4.2μ、7.0μ。
表面处理代号:C-铬酸系处理、O-涂油、P-磷酸系处理、S-铬酸系处理+涂油、Q-磷酸系处理+涂油、M-不处理。
标记:产品名称(钢板或钢带),本产品标准号、牌号、表面处理类别、锌层代号、规格及尺寸、外形精度。
标记示例:钢板,标准号Q/BQB430,牌号SECC,表面铬酸钝化处理(C),锌层代号20/20,厚度0.80mm,宽度1000mm,普通精度(A),长度2000mm,不平度按普通不平度精度PF.A,则标记为:Q/BQB 430 SECC-C-20/20 钢板:0.80B×1000A×2000A-PF.A 产地:宝钢、南韩浦项、日本、德国克虏伯钢厂、比利时CKRM等
【钣金件成品检验标准】推荐阅读:
钣金车间质量检验标准09-20
原材料、成品、半成品的检验规程09-15
成品检验岗位职责06-23
钣金折弯技术要求06-23
钣金技工笔试题07-23
钣金设计注意事项10-10
汽车维修钣金工试题10-08
成品保护方法?07-21
成品保护的方案措施06-17
成品仓库工作流程11-07